

Miscellaneous Liver Diseases in Infancy & Childhood in Several Hospitals

1. Izhar Fatima 2. Nasim Ahmed Sheikh 3. Muhammad Khalid Hassan Khan

1. Asstt. Prof. of Pathology, Dow Medical College, DUHS, Karachi 2. Asstt. Prof. of Pathology, Dow Medical College, DUHS, Karachi 3. Asstt. Prof. of Medicine, Civil Hospital, Karachi

ABSTRACT

Introduction: Most of the liver diseases are different in pediatric age group, as compared to those in adult in many respects. Beside inflammatory, neoplastic and metabolic liver diseases; pediatric liver diseases also exhibit specific features of genetic predisposition, as well as environmental or other acquired diseases. In congenital diseases choledochal cyst, biliary atresia and cholestasis are included. While in environmental or acquired/nutritional diseases, fatty change liver and Kawashioror are found.

Objectives: A study is done to overview the miscellaneous congenital and acquired liver diseases in infancy and childhood which are important but less common as compare to inflammatory, metabolic and other liver diseases.

Study Design: Retrospective Study.

Place and Duration of Study: This study was conducted at Department of Pathology, Basic Medical Science Institute (BMSI), Jinnah Postgraduate Medical Center, Karachi from 1995 to 2004

Materials and Methods: Slides / paraffin blocks of liver biopsies were taken from patients under 15 years of age. The cases were retrospective.

Result: The distribution of 100 cases of miscellaneous liver diseases in infancy and childhood were according to age and sex. Total 48 (48%) cases were encountered in the youngest of 0-5 year's age group, 36 (36%) cases in 6-10 years and only 16 (16%) cases in 11-15 years age group.

Conclusion: It is observed that the tendency of miscellaneous liver diseases are higher up till 5 years of age and sexual differentiation showing male predominance with male to female ratio of 3:2. The miscellaneous liver diseases in younger children, may be congenital like biliary atresia, intra hepatic biliary hypoplasia and cholestasis or acquired; like tuberculosis and the Kawashioror (malnutrition). These are well known in third world countries and in Pakistan.

Key Words: Fatty change liver, Biliary atresia, Cholestasis, Choledocal cyst, Kawashioror.

INTRODUCTION

Liver diseases which are not included in inflammatory, storage or metabolic disorders of liver, are known as miscellaneous liver disorders/diseases in infancy and childhood¹. There are congenital and acquired liver diseases. Congenitally there are extra hepatic biliary atresia, intra hepatic biliary hypoplasia, choledochal cyst, and hepatic fibrosis. In the acquired cases inflammatory (tuberculosis) and nutritional disease like Kawashioror are included.

Fatty change may be acquired or occurs due to inherited metabolic disturbances. Three most common causes of jaundice in infant are hepatitis, biliary atresia and choledochal cyst.

In the Children fatty liver disease is asymptomatic or with nonspecific symptoms like abdominal pain and fatigue. The children are overweight or obese mostly². Hepatomegaly is often present. Acanthosis nigricans, and fatty liver is present 30-50% in insulin resistance diabetic children^{3,4}. In these children family history of fatty liver, insulin resistance, or type 2 diabetes mellitus is present⁵.

Biliary atresia is a rare congenital or acquired disease of the liver causing, obliteration or discontinuity of the extrahepatic biliary system. It is idiopathic and causes

obstruction to bile flow or cholestatic jaundice in neonates^{6,7,8}. The fetal/perinatal form is occurred within the first 2 weeks of life; the postnatal type presents in infants from 2-8 weeks. In acquired cases, chronic rejection of a transplanted liver allograft is a known cause⁸.

In the world, the incidence of Biliary atresia is varies from 5/100,000 to 32/100,000 live births, and is highest in Asia and the Pacific region. Females are affected more than males^{9,10}.

Inherited syndromes of intrahepatic cholestasis and biliary atresia are the most common causes of chronic liver disease and the prime indication for liver transplantation in children¹¹. Cholestasis in children often result from pathologic processes that begin early in postnatal life, when the liver has not reached functional maturity and may be more susceptible to the adverse consequences of endogenous (metabolic, genetic) or environmental insults¹².

Hepatic tuberculosis is rare and most of the cases have been reported from South Africa and the Phillipines^{13,14}. It may occurs with an active pulmonary or miliary tuberculosis. The Tubercl bacilli reach the liver by hematogenous route (hepatic artery), while in focal liver tuberculosis by portal vein. The granuloma (caseating and noncaseating) formation take place in

the periportal areas¹⁵. Clinically Jaundice is very rare, but high fever, weight loss, right hypochondriac pain and hepatomegaly are commonly present¹⁶.

Choledochal cyst, is a cystic dilatation of the biliary tree, in infancy. It may be found with biliary atresia or without biliary atresia. Similar clinical symptoms appear in both the choledochal cyst and biliary atresia in infants¹⁷.

Kwashiorkor is one of the type of protein energy malnutrition. It is serious nutritional disorder and since last 70 years it is occurring in endemic^{18,19,20,21}. Its severity is hardly decreased within last seventy years and about one third of all children are affected by Protein Energy Malnutrition; in which about 20 % of children are lived in Africa. Many infectious diseases can occur in Kwashiorkor and about 10 million children are killed under 5 years of age per year²². The surviving children have gotten the complications and different type of diseases^{23,24}.

Extramedullary hematopoiesis (EMH) occurs outside of the bone marrow is a rare and asymptomatic disease. The site of occurrence are spleen, liver, or lymph nodes, and less commonly the posterior mediastinum^{25,26}.

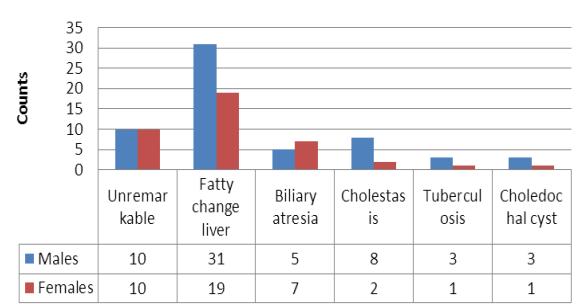
MATERIALS AND METHODS

100 Slides / paraffin blocks of liver biopsies from patients under 15 years of age. The cases were retrospective from 1995 to 2004.

Retrospective Cases:

- 1- 40 Slides / paraffin blocks of liver biopsies received during last 10 years in the Department of Pathology, Basic Medical Science Institute (BMSI), Jinnah Postgraduate Medical Center, Karachi.
- 2- 60 Slides / paraffin blocks of liver biopsies received in Department of Pathology, National Institute of Child Health (NICH) Karachi during last 10 years.

Slides / paraffin blocks of liver biopsies received during last 10 years in the Department of Pathology, Basic Medical Science Institute (BMSI), Jinnah Postgraduate Medical Center and National Institute of Child Health (NICH) Karachi. A clinical protocol including the particulars about the patients name, age, sex and diagnosis were obtained from the surgical pathology registers, request cards and copies of report. Haematoxylin and eosin (H&E) stained slides of all cases were used with special staining help in reaching a specific diagnosis.


RESULTS

In the study total 100 cases of miscellaneous liver diseases are taken. According to age and sex the maximum 48 (53.77 %) cases are found in 0-5 years, 36 (31.7%) cases in 6-10 years and 16 (14.6%) cases

in 11-15 years age group. The male to female ratio is 3:2.

Table No.1: Distribution of 100 cases of Miscellaneous liver diseases

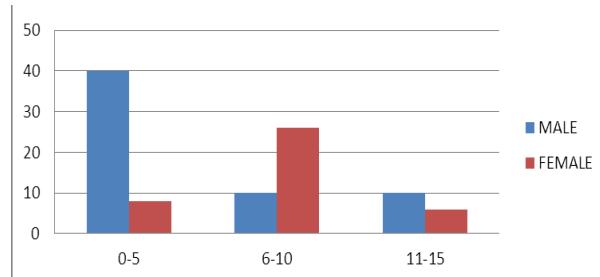

Sr. No.	Diagnosis	Males	Females	Total	%age
1	Unremarkable	10	10	20	20
2	Fatty change liver	31	19	50	50
3	Biliary atresia	5	7	12	12
4	Cholestasis	8	2	10	10
5	Tuberculosis	3	1	4	4
6	Choledochal cyst	3	1	4	4
	Total	60	40	100	100

Figure No.1: Distribution of miscellaneous liver disease

Table No.2: Showing age and sex distribution of 100 miscellaneous cases of liver diseases

Age	Male	%	Female	%	Total	%
0-5	40	40	8	8	48	48
6-10	10	10	26	26	36	36
11-15	10	10	6	6	16	16
Total	60	60	40	40	100	100

Figure No.2: Age and sex distribution of miscellaneous cases of liver disease

DISCUSSION

In "Miscellaneous liver diseases" different congenital and acquired diseases are included. Some liver diseases which could not be placed under inflammatory, cirrhotic and metabolic diseases, were described under miscellaneous group. Craig et al.(1980) described 13% of " miscellaneous disorders " which finally caused liver cirrhosis²⁷. Shakoor (1987) described 19% cases

with 5 % cholestasis and fatty change each and 9 % under biliary atresia and obstruction²⁸.

Fatty change or fatty infiltration of the liver, can occur in diffuse or in focal form, it is caused by increased levels of triglycerides in hepatocytes. It can occur in infant and children due to diabetes, obesity, steroid therapy, chemotherapy, malnutrition, hyperalimentation, cystic fibrosis, jeunoileal bypass surgery, and inherited metabolic disturbances. In adults, it is occurred most commonly due to alcohol abuse^{29,30,31,32,33,34,35,36,37}.

In congenital biliary atresia, acute liver failure and biliary hypoplasia, there is elevated levels of serum bilirubin (hyperbiliru-binemia) occurred, which is deposited in liver and soft tissues³⁸.

Chronic liver failure may occur due to persistent jaundice, either inherited biliary hypoplasia or extrahepatic biliary atresia, in neonates. While in older children, autoimmune liver disease or cystic fibrosis are the most common causes of liver failure³⁹.

Histopathologically, in biliary atresia, the inflammatory damage to the intra- and extrahepatic bile ducts with sclerosis and narrowing or obliteration of the biliary tree is present⁴⁰. Progressive fibrosis and biliary cirrhosis occur in children due to no proper drainage of bile and cirrhosis can cause hepatocellular carcinoma⁴¹. In untreated cases, cirrhosis and death can occur within the first years of life⁴².

The 29 infants were surgically identified of choledochal cyst, by Kim and associates retrospectively, younger than 1 year of age from 1991 to 2004. There were 18 patients with Chronic Hepatitis and 11 were with Biliary Atresia and Chronic Hepatitis. Marked fibrosis, bile duct proliferation and portal inflammation were also seen^{43,44}.

In Cholestasis, the bile salts are accumulated in hepatocytes, which may cause hepatic failure. In cases of hepatitis with Cholestasis and fibrosis hepatic failure may occur. While in congenital hepatic fibrosis with hepatomegaly and normal liver function tests (LFTs) are accompanied by impaired renal function may not be diagnosed until biopsied²⁸. In a study by Alvarez et al. (1981) 27 cases of congenital hepatic fibrosis were described in children in which 13 were males and 14 were females¹.

Sometimes minilaparotomy is done for histopathological examination or culture of the scrapings from the abscess wall, to rapidly settle the diagnosis and expedite treatment⁴⁵. Recently, the PCR has been used for the detection of *M. tuberculosis* DNA. About 57% of hepatic granulomas caused by tuberculosis gave positive PCR test results. It also distinguish *M. tuberculosis* from other species of *Mycobacterium*⁴⁶.

In the present study not a single case of extensive fibrosis was noted. However, there were 100 miscellaneous cases in which 20 (20%) were unremarkable with no significant change, had minimal inflammatory infiltrate in portal areas, slightly dilated

portal vein and/or negligible periportal fibrosis. The cases with fatty change were 50 (50%) and other including 12 cases (12 %) biliary atresia, 10 cases (10%) cholestasis, 4 cases (4%) tuberculosis and 4 cases (4%) choledochal cyst.

However differentiation between biliary atresia which is a congenital disorder and neonatal hepatitis which is acquired, is mandatory. Amanullah (1976) suggested different tests e.g. RBC peroxide hemolysis tests, vitamin E absorption studies, determination of 5 nucleotidase and determination of serum alpha - fetoproteins to differentiate between neonatal hepatitis and biliary atresia⁴⁷. Shakoor (1987) described the modified Rose Bengal test, in which lipoprotein - X determination need more advanced technology²⁸.

There are different types of choledochal cyst. Cyst in the proximal part of common bile duct is common. Stones or sludge may be present within the cyst. Microscopically there is thick fibrous wall of choledochal cysts with chronic inflammation. Mucosa and submucosa may show ulceration. Chronic inflammatory changes are more marked in older children than younger children^{48,49,50,51,52,53}.

CONCLUSION

Hepatomegaly is the commonest finding in infants and children. Some times with no obvious cause it can be diagnosed by taking history, physical examination and laboratory investigations. If the cause is not detected on these ground, it could be due to miscellaneous diseases of liver. Liver biopsy must be performed to find out the pathological process or cause of disease. This study can be used for future research and provides an overview of miscellaneous liver diseases to facilitate the analysis of past research discoveries and provide essential information for prioritizing directions.

REFERENCES

1. Alvarez F, Bernard O, Burnulle F, Hadchad M, Leblanc A, Olievre M, Alaggille D. Congenital hepatic fibrosis in children. *J Pediatr* 1981; 99(3):370-75.
2. Manco M, Marcellini M, Devito R, Comparcola D, Sartorelli MR, Nobili V. Metabolic syndrome and liver histology in paediatric non-alcoholic steatohepatitis. *Int J Obes* 2008;32:381-387.
3. Rashid M, Roberts EA. Nonalcoholic steatohepatitis in children. *J Pediatr Gastroenterol Nutr* 2000;30:48-53.
4. Schwimmer JB, Deutsch R, Rauch JB, Behling C, Newbury R, Lavine JE. Obesity, insulin resistance, and other clinicopathological correlates of pediatric nonalcoholic fatty liver disease. *J Pediatr* 2003;143:500-505.
5. Schwimmer JB, McGreal N, Deutsch R, Finegold MJ, Lavine JE. Influence of gender, race, and

- ethnicity on suspected fatty liver in obese adolescents. *Pediatrics* 2005;115:e561-e565.
6. Haber BA, Erlichman J, Loomes KM. Recent advances in biliary atresia: prospects for novel therapies. *Expert Opin Investig Drugs* 2008;17(12): 1911-24.
 7. Alagille D. Extrahepatic biliary atresia. *Hepatology* 1984;4:7S-10S.
 8. Sleisenger MH, Feldman M, Friedman, LS. Sleisenger and Fordtran's gastrointestinal and liver disease: pathophysiology, diagnosis, management 8th ed. Saunders:Philadelphia; 2006.
 9. Strickland AD, Shannon K. Studies in the etiology of extrahepatic biliary atresia: time-space clustering. *J Pediatr* 1982, 100:749-753.
 10. Yoon PW, Bresee JS, Olney RS, James LM, Khoury MJ. Epidemiology of biliary atresia: a population-based study. *Pediatrics* 1997;99: 376-382.
 11. Santos JL, Choquette M, Bezerra JA. Cholestatic liver disease in children. *Curr Gastroenterol Rep* 2010;12(1):30-9.
 12. Balistreri WF, Heubi JE, Suchy FJ. Immaturity of the enterohepatic circulation in early life: factors predisposing to "physiologic" maldigestion and cholestasis. *J Pediatr Gastroenterol Nutr* 1983; 2:346-354.
 13. Hersch C. Tuberculosis of the Liver. A study of 200 cases. *South Afr Med J* 1964;38:857-63.
 14. Alvarez SZ, Caprio R. Hepatobiliary tuberculosis. *Dig Dis Sci* 1983;28:193-4.
 15. Reynolds TB, Campra JL, Peters RL. Hepatic granulomata. In: Zakim D, Boyer TD, editors. *Hepatology - A text book of liver diseases*, 2nd Ed. Philadelphia: WB Saunders; 1990.p.1098.
 16. Wilde CC, Kuch YK. Case report-Tuberculous hepatic and splenic abscess. *Clin Radiol* 1991; 43:215-6.
 17. Kim WS, Kim IO, Yeon KM, Park KW, Seo JK, Kim CJ. Choledochal cyst with or without biliary atresia in neonates and young infants: US differentiation. *Radiology* 1998;209:465-469.
 18. Williams CD. A Nutritional Disease of Childhood Associated with a Maize Diet. *Archives of Diseases in Childhood*. (1933). Republished: World Health Organization, Geneva 1997;8: 423-433.
 19. Brock LF, M Autret Kwashiorkor in Africa. *World Health Organization Monograph Series*, Geneva 1952; 8.
 20. Wellcome Library Williams, Cicely Delphine (1893-1992) http://www.aim25.ac.uk/cgi-bin/search2?coll_id=2896&inst_id=20 Accessed January 10, 2004.
 21. Beinart J, and R King Cicely Williams: Memoirs of a Doctor. History Workshop Centre for Social History Newsletter, London, UK. 1986; 3.
 22. Grigsby DG. Malnutrition: eMedicine at: http://www.emedicine.com/ped/topic_1360.htm Accessed December 13, 2003.
 23. Institute of Statistical, Social and Economic Research Ghana Human Development (GHDR) 2000: Science, Technology & Human Development. United Nations Development Programme (UNDP), ISSER, University of Ghana, Legon, Ghana: 2000.
 24. Institute of Statistical, Social and Economic Research Ghana Human Development (GHDR) 2001: Science, Technology & Human Development. United Nations Development Programme (UNDP), ISSER, University of Ghana, Legon, Ghana: 2001.
 25. Lowman RM, Bloor CM, Newcomb AW. Roentgen manifestations of thoracic extramedullary hematopoiesis. *Dis Chest* 1963; 44:154-62.
 26. Hochholzer L, Theros EG, Rosen SH. Some unusual lesions of the mediastinum: roentgenologic and pathologic features. *Sem Roentgenol* 1969;4:74-90.
 27. Criag JM, Gellis SS, Hisa DY. Cirrhosis of the liver in infant and children. *Am J of Diseases of child* 1980;90:299-322.
 28. Shakoor KA. Histological diagnosis of pediatric liver disease. *Pakistan Pediatr J* 1987;11(2):73-80.
 29. Siegel MJ. Liver and biliary tract. In: Pediatric body CT. Philadelphia: Lippincott Williams & Wilkins;1999.p.141-174.
 30. Halvorsen RA, Korobkin M, Ram PC, Thompson WM. CT appearance of focal fatty infiltration of the liver. *AJR* 1982;139: 277 -281.
 31. Yoshikawa J, Matsui O, Takashima T, et al. Focal fatty change of the liver adjacent to the falciform ligament: CT and sonographic findings in five surgically confirmed cases. *AJR* 1987;149: 491 -494.
 32. Wenker JC, Baker MK, Ellis JH, Glant MD. Focal fatty infiltration of the liver: demonstration by magnetic resonance imaging. *AJR* 1984;143: 573-574.
 33. Kawashima A, Suehiro S, Murayama S, Russell WJ. Focal fatty infiltration of the liver mimicking a tumor: sonographic and CT features. *J Comput Assist Tomogr* 1986;10: 329 -331
 34. Scott WW, Sanders RC, Siegelman SS. Irregular fatty infiltration of the liver: diagnostic dilemmas. *AJR* 1980;135: 67 -71
 35. Yates CK, Streight RA. Focal fatty infiltration of the liver simulating metastatic disease. *Radiol* 1986;159: 83 -84.
 36. Flournoy JG, Potter JL, Sullivan BM, Gerza CB, Ramzy I. CT appearance of multifocal hepatic steatosis. *J Comput Assist Tomogr* 1984;8: 1192-1194.

37. Bashist B, Hecht HL, Harley WD. Computed tomographic demonstration of rapid changes in fatty infiltration of the liver. *Radiol* 1982;142: 691-692.
38. Amaral TH, Guerra Cde S, Bombonato-Prado KF, Garcia de Paula E Silva FW, de Queiroz AM. Tooth pigmentation caused by bilirubin: a case report and histological evaluation. *Spec Care Dentist* 2008; 28(6): 254-7.
39. Kelly DA. Managing liver failure *Postgrad Med J*. 2002;78(925): 660-7.
40. Gautier M, Eliot N. Extrahepatic biliary atresia: morphological study of 98 biliary remnants. *Arch Path Lab Med* 1981;105:397-402.
41. Bassett MD, Murray KF. Biliary atresia: recent progress. *J Clin Gastroenterol* 2008;42(6):720-9.
42. Kasai M, Kimura S, Asakura Y, Suzuki Y, Taira Y, Obashi E. Surgical treatment of biliary atresia. *J Pediatr Surg* 1968;3:665-675.
43. Kim WS, Kim IO, Yeon KM, Park KW, Seo JK, Kim CJ. Choledochal cyst with or without biliary atresia in neonates and young infants: US differentiation. *Radiol* 1998; 209:465-469.
44. Kessler A, Rosenberg HK. Sonographic approach to infants and children with jaundice. In: Lombay B, eds. 1993 yearbook of pediatric radiology. Vol 5. Miskolc, Hungary: Central Medical Library of County Hospital, 1993; 3-22.
45. Singh D, Singh S, Raut SB, Karmarkar SJ. Isolated liver tuberculosis: A case report. *Pediatr Surg Int* 2004;20:727-8.
46. Diaz ML, Herrera T, Vidal YL, et al . Polymerase chain reaction for the detection of *Mycobacterium tuberculosis* DNA in tissue and assessment of its utility in the diagnosis of hepatic granuloma. *J Lab Clin Med* 1996;127:359-63.
47. Amanullah, A. Neonatal jaundice. *Am. J Dis Child* 1976;130:1274-80.
48. Oguchi Y, Okada A, Nakamura T, et al. Histopathologic studies of congenital dilatation of the bile duct as related to an anomalous junction of the pancreaticobiliary ductal system: clinical and experimental studies. *Surgery*. Feb 1988; 103(2): 168-73.
49. Miyano T, Yamataka A, Kato Y, et al. Hepaticenterostomy after excision of choledochal cyst in children: a 30-year experience with 180 cases. *J Pediatr Surg* 1996;31(10):1417-21.
50. Yamaguchi M, Sakurai M, Takeuchi S, Awazu S. Observation of cystic dilatation of the common bile duct by ultrasonography. *J Pediatr Surg* 1980; 15(2):207-10.
51. Todani T, Watanabe Y, Urushihara N, et al. Biliary complications after excisional procedure for choledochal cyst. *J Pediatr Surg* 1995;30(3): 478-81.
52. Raffensperger JG. *Swenson's Pediatric Surgery*. 5th ed. Norwalk, Conn: Appleton & Lange 1990:665.
53. Suita S, Shono K, Kinugasa Y, et al. Influence of age on the presentation and outcome of choledochal cyst. *J Pediatr Surg*. Dec 1999;34(12): 1765-8.

Address for Corresponding Author:**Dr. Izhar Fatima,**Asstt. Prof. of Pathology,
Dow Medical College, DUHS,
Karachi