

Histological Changes in Human Gallbladder Mucosa due to Cholelithiasis

1. Alina Saqib 2. Shahzeen Fatima 3. Ali Nawaz Bhugri 4. Asmat Kamal Ansari

1. Asstt. Prof. of Anatomy, IMC, Tando Mohammad Khan Sindh 2. Asstt. Prof. of Physiology, Isra University, Hyderabad 3. Asstt. Prof. of Pharmacology, IMC, Tando Mohammad Khan Sindh
4. Prof. of Physiology, Isra University, Hyderabad

ABSTRACT

Objective: To observe the histological changes in gallbladder mucosa due to Cholelithiasis.

Study Design: Observational study

Place and Duration of Study: This study was carried out at Department of Surgery, Anatomy and Pathology of Isra University Hospital and Institute of Biochemistry Sindh University Jamshoro.

Materials and Methods: Sixty nine cases of Cholelithiasis undergoing surgery were included in this study. After operation the gall bladders were obtained and fixed in 10% formalin. Gall bladder stone were obtained and their analysis was done in the Institute of Biochemistry Sindh University Jamshoro. Gross examination of gall bladders was done and for microscopy after hematoxylin and eosin staining, sections were obtained from the fundus, body and neck of the gallbladder. Additional sections were taken from grossly abnormal looking areas.

Data analysis: Data was analyzed by using SPSS version 16.0. Chi square test was used to determine statistical significance between categorical groups ($p<0.5$)

Results: it was observed that size of gall bladder were normal in 41(59.4%), increased in 20(29.0%) and shrunken in 08(11.6%) cases. The mucosal changes seen in Cholelithiasis include, Cholestrolosis in 18 (26.08%), ulceration 07 (10.1%), atrophy 12 (17.4%) and lymphocytic infiltration in 67 (97%) cases

Conclusion: Cholelithiasis produced a series of histopathological changes in the gallbladder mucosa. These changes have no relation with type of gall stone

Key Words: Gall bladder Mucosa, Cholelithiasis,

INTRODUCTION

Cholelithiasis is one of the most common medical problems leading to surgical intervention and affects approximately 10% of the adult population in the United States. Around 500,000 cholecystectomies are performed in the US every year⁽¹⁾. In Asian population, prevalence of gallstone disease is lower, ranging from 3% to 15%.⁽²⁾ In Pakistan the incidence of Cholelithiasis is increasing^{3,4}. Incidence of Cholelithiasis in Sind is about 9.03% with female to male ratio of females 3.3:1³. Cholesterol, bile pigment and calcium are major constituents involved in the formation of human gallstones⁵; majority of gallstones are cholesterol and pigment stones⁶. Cholesterol gallstones constitute around 70% cholesterol and remaining small fraction is composed of pigment residues and trace elements⁽⁷⁾. Calcium salts of phosphate, mucin, glycoprotein, phospholipids and some metals are other constituents of gall stones. All these substances are normally found in the sera of stone formers⁸. The gallbladder mucus plays a major role in the pathogenesis of Cholelithiasis as it promotes the nucleation of stones⁹. Various histopathological changes in mucosa of gall bladder including acute inflammation, chronic inflammation, glandular hyperplasia, Cholestrolosis, dysplasia and carcinoma¹⁰. Gross features associated with Cholelithiasis include congestion in serosal surface and thickening of gall

bladder wall. Mucosa became hemorrhage, strawberry-like, atrophic and slightly nodular in appearance¹¹. Changes in epithelium also depend on the type of stones¹². In countries like Pakistan where incidence of carcinoma gall bladder is higher than other countries, the knowledge of histological changes in gall bladder mucosa will help us understanding the pathogenesis of the malignant process. Present study is aimed to see the changes in the mucosa of gall bladder and the extent of damage caused by different type of stones.

MATERIALS AND METHODS

This study was carried out at Department of Surgery, Anatomy and Pathology of Isra University Hospital and Institute of Biochemistry Sindh University Jamshoro. Sixty nine cases of Cholelithiasis undergoing surgery were included in this study. The personal and medical data of patients was recorded on specific Performa. After operation the gall bladders were obtained and fixed in 10% formalin. Gall bladder stone were obtained and their analysis was done in the Institute of Biochemistry Sindh University Jamshoro. Gross examination of gall bladders was done to observe the outer surface of gall bladder, wall thickness, and mucosal abnormalities. For microscopy after hematoxylin and eosin staining, sections were obtained from the fundus, body and neck of the gallbladder. An additional section was taken from grossly abnormal looking areas. Data were analyzed on SPSS-version-16.

RESULTS

Sixty nine cases of Cholelithiasis undergoing surgery were included in this study. Mean Age of the patients was 35.81 ± 8.12 years. 53.63% of the patients belonged to the age group 35-44 years. (Table-1) 71.0% patients were female with a female to male ration of 2.45:1. (Table-2). In the present study, Cholesterol stones were most common (55.07%). (Table-3). Gall bladder size were normal in 41(59.4%), increased in 20(29.0%) and shrunken in 08(11.6%) cases. (Table 4). Gall bladder wall was normal in 47(68.1%) and thickened in 22(31.9%) cases. (Table-5). In our study microscopic changes found in the mucosa of gall bladder with Cholelithiasis included, Cholestrolosis 18 (26.08), Ulceration 07 (10.1%), atrophy 12 (17.4%) and lymphocytic infiltration in 67 (97%) cases.(table-6). Microscopic changes when related to type of gall stone revealed that; Cholestrolosis was present in 13(72.22%) case of cholesterol stones, 03(16.67%) case of pigmented stones and 02(11.11%) cases of mixed type of gall stones. Ulceration was present in 04(57.14%) case of cholesterol stones, 02(28.57%) case of pigmented stones and 01(14.29%) cases of mixed type of gall stones. Atrophic changes was present in 09(75.0%) case of cholesterol stones, 02(16.66%) case of pigmented stones and 01(08.34%) cases of mixed type of gall stones. Lymphocytic infiltration was present in 35(52.23%) case of cholesterol stones, 25(37.33%) case of pigmented stones and 07(10.44%) cases of mixed type of gall stones. (Table-6).

Table No.1: Age distribution of patients

n = 69, Mean age = 35.81 ± 8.12		
	Frequency	%
15-24	08	11.60
25-34	17	24.64
35-44	37	53.62
45-54	06	8.69
55-64	01	01.45
Total	69	100

Table No.2: Gender distribution of patients

	Frequency	%
Male	20	29.0
Female	49	71.0
Total	69	100.0

Table No.3: Frequencies of different type of gall stones

n = 69		
Gall Stones Type	Frequency	%
Cholesterol	38	55.07
Pigmented	20	28.99
Mixed	11	15.94
Total	69	100

Table No.4: Gall Bladder size

	Frequency	%
Normal	41	59.4
Increased	20	29.0
Shrunken	8	11.6
Total	69	100.0

Table No.-5: Wall thickness of gall bladder

	Frequency	Percent
Normal	47	68.1
Thickened	22	31.9
Total	69	100.0

Table No.-6: Microscopic mucosal changes in gall bladder

Microscopic Mucosal Changes	Type of Gallstone			Total	
	Cholesterol	Pigmented	Mixed		
Cholestrolosis	Frequency (%)	13 (72.22%)	03 (16.67%)	02 (11.11%)	18 (100%)
Ulceration	Frequency (%)	04 (57.14%)	02 (28.57%)	01 (14.29%)	07 (100%)
Atrophic Change	Frequency (%)	09 (75.0%)	02 (16.66%)	01 (8.34%)	12 (100%)

DISCUSSION

Gallstones remain a serious health concern affecting millions of people throughout the world. It exhibits prevalence rates of about 25% in industrialized societies but are uncommon in underdeveloped or developing societies¹³. The present study shows that in Hyderabad, the cholesterol stones are most common type. Our results are in agreement with the studies carried out in Riyadh¹⁴. This finding is also in agreement with a study in the western region of Saudi Arabia, where 90.4% of the gallstones contained cholesterol¹⁵. Reports from western countries, such as Germany and some Scandinavian countries also showed cholesterol as the primary component of the gallstones^{16, 17}. Another study conducted by Channa et al also shows that 67.9% of gall stones are cholesterol stones¹⁸. Formation of cholesterol calculi have been related to high carbohydrate diet, which leads to cholesterol super saturation in the bile¹⁹. When cholesterol concentration becomes more than bile acids and salts with in bile then it results in the nucleation of cholesterol and thus results in gall stone formation. The reason for this super saturation of cholesterol is believed to be abnormal production of bile from liver. Such type of cholesterol nucleation in the absence of bile acids and salts is only true for cholesterol stones, which are composed of mainly cholesterol²⁰. Our results showed that females were more affected with Cholelithiasis than males, with a female to male ratio of 1.6:1. According to the Central Department of Statistics, Saudi Arabia, female to male ratio of the total

Saudi population was 100:102 in 2005²¹. One study carried out at different hospitals at Hyderabad by Channa et al shows that among gall bladder disease patients, 70.63% were females²⁰. This might be due to basic hormonal differences between males and females, together with the differences that might exist due to co-expression of sex hormone receptors in the gallbladder of both sexes²¹. The medical records of the patients of the present study showed that most of the female patients had parity. This is also in agreement with other studies, which concluded that fertility and multiple pregnancies appeared to be a risk factor for gallstones among Saudi women²². In our study, the mean gallbladder wall thickness in patients with gall stones was higher in 22(31.9%) cases. These observed differences might be due to the fact that the presence of gall stones in the gallbladder causes irritation of the gallbladder wall thereby resulting in thickening of the gallbladder wall²³. The healthy gallbladder absorbs cholesterol and desaturates bile. This protective function is lost in chronic cholecystitis resulting from inflammation of the gallbladder wall. The inflamed gallbladder, with its thickened wall, encourages supersaturation of gallbladder bile and subsequent gallstone formation²⁴. Portincasa *et al* working in Italy found a significant increase in gallbladder wall thickness amongst Italians with gall stones compared to those without gall stones²⁵. In our study, mucosal changes were present in 52 (75.36%) in gall bladder with stones, our result is in agreement with the results of Khanna et al, which shows that mucosal changes are present in 90(64.5%) cases^{6,12}. In our study microscopic changes in the mucosa of gall bladder with Cholelithiasis includes, Cholesterosis 18 (26.08), Ulceration 07 (10.1%), and atrophy 12 (17.4%), Cholesterosis 18 (26.08). Another study conducted by Zahrani and Mansoor, showed 11% specimens with Cholesterosis²⁶. In literature, Cholesterosis is reported in approximately 20% of cholecystectomy specimens. This is characterized by the accumulation of cholesterol esters and triglyceride in aggregates of sub epithelial macrophages and, to a lesser extent, in the gallbladder epithelium itself²⁷. Although the origin of Cholesterosis is unknown, most theories stress that either super saturation of the bile with cholesterol, which is found in many but not all cases, or abnormal lipid transport across the mucosa leads to the formation of the lipid deposits. Bile cholesterol super saturation is also seen with cholesterol gallstones²⁸. In the present study, Cholesterosis was present in 13 (72.22%) case of cholesterol stones, 03(16.67%) case of pigmented stones and 02(11.11%) cases of mixed type of gall stones. Our results are in agreement with the results of Mohan et al. According to their study, Cholesterosis was present in 26.3% of cases with cholesterol stones²⁹.

CONCLUSION

Cholelithiasis produced a series of histopathological changes in the gallbladder mucosa. These changes have no relation with type of gall stone.

REFERENCES

1. Moosavi K, Vatankhah S, Salimi J. Relative measurement of heavy elements in the bile, gallbladder and gallstones. *Iran J Res* 2006;3: 195-8.
2. Shaffer EA. Epidemiology and risk factors for gallstone disease: has the paradigm changed in the 21st century? *Current Gastroenterology Reports* 2005;7:132-40.
3. Channa NA, Khand FD, Bhanger MI, Leghari, MH. Surgical incidence of cholelithiasis in Hyderabad and adjoining areas (Pakistan). *Pak J Med Sci* 2004;20(1):13-7.
4. Khand FD. Cholelithiasis in Southern Sindh (Pakistan): Incidence and composition of gallstones. *Specialist* 1997;13:263-70.
5. Vivek K, Vinita S, Awadhesh K, Surya N, Pradeep K, Jagdish P. Quantitative analysis of gallstones using laser-induced breakdown spectroscopy. *Applied Optics* 2008;47:37-8.
6. Ahuquillo A, Rubio R, Ribo J, Ros EA, Vela M. Application of focused-microwave wet digestion for the determination of trace metals in human gallstones by ICP/AES. *Pakistan Journal of Analytical Chemistry* 2003;4: 5-7.
7. Ravnborg L, Teilum D, Rotb L, Pedersn I. Gallbladder stones classified by chemical analysis of cholesterol content. *Scandinavian J Gastroenterol* 1990;25: 720-4.
8. Pundir C, Rani K, Garg P, Chandhary R, Chandran P, Kumari M. Correlation between chemical composition of biliary calculi and sera of stone formers. *Indian J Med Sci* 2002; 56:373-5.
9. Afdhal NH. Cholesterol crystal nucleation: A decade- long search for the missing link in gallbladder pathogenesis. *Hepatology* 1990;11: 669-702.
10. Kim HJ, Kim JS, Kim KO, Park KH, Yim HJ, Kim JY, et al. [Expression of MUC3, MUC5AC, MUC6 and epidermal growth factor receptor in gallbladder
11. Khanna, R., Chansuria, R., Kumar, M., Shukla HS. Histological changes in gallbladder due to stone disease. *Indian J Surg* 2006;68:201-4.
12. Baig SJ, Biswas S, Das S, Basu K, Chattopadhyay G. Histopathological changes in gallbladder mucosa in cholelithiasis: correlation with chemical composition of gallstones. *Tropical Gastroenterol* 2002;23(1):25-7.
13. Shareef KM, Omar LS, Garota SA. Correlation between the chemical components of gall stones

and sera of atone formers. *Gomal J Med Sci* 2009; 7(1): 2-6.

14. Salam A, Nazir G, Bakhash S, Ramazan M, Nnusratullah. Biochemical comparative study of gall stones in Riyadh Saudi Arabia. *Gomal J Med Sci* 2002;1: 1-4.
15. Mokhtar AMA. Cholelithiasis in the western region of Saudi Arabia. *Est African Medical J* 1990; 67(4):286-290.
16. Schafmayer C, Hartleb J, Tepel J, Albers S, Freitag S, Volzke H, et al. Predictors of gallstone composition in 1025 symptomatic gallstones from Northern Germany. *BMC Gastroenterol* 2006;6:36.
17. Angwafo FF, Takongmo S, Griffith D. Determination of chemical composition of gall bladder stones: Basis for treatment strategies in patients from Yaounde, Cameron. *World J Gastroenterol* 2004;10(2):303-305.
18. Channa NA, Khand FD, Khand TU. Analysis of human gallstones by Fourier Transform Infrared (FTIR). *Pak J Med Sci* 2007;3(4):546-550.
19. Singh A, Sagga SPS, Jindal VP, Singh K, Rao SS. Gall bladder disease: An analytic report of 250 cases. *J Ind Med Assoc* 1989; 87:253-656.
20. Channa NA. Issue Year : 2008, Issue Number : 2, Issue Month : June gallstone disease: a review 2008.
21. Jarrar BM, Al-Rowaili MA. Chemical Composition of Gallstones from Al-Jouf Province of Saudi Arabia *Malaysian J Med Sci* 2011;18(2): 47-52.
22. Murshid KR. Syptomatic gallstones: A disease of young Saudi women. *Saudi J Gastroenter* 1998;4(3):159-162.
23. Olokoba AB, Bojuwoye BJ, Olokoba LB, Wahab KW, Braimoh KT, Inikori AK, et al. The relationship between gallstone disease and gallbladder wall thickness. *African Scientist* 2006; 7(4):171-176.
24. Hofmann AF. Pathogenesis of cholesterol gallstones. *J Clin Gastroenterol* 1998;10 suppl 2: S1-11.
25. Portincasa P, Di Ciaula A, Baldassare G, et al. Gallbladder motor function in gallstone patients: sonographic and in vitro studies on the role of gallstones, smooth muscle function and gallbladder wall inflammation. *J Hepatol* 1994;21(3):430-440.
26. Zahrani IH, Mansoor I. Gallbladder pathologies and cholelithiasis. *Saudi Med J* 2001;22(10).
27. Baksh T, Nasif O, Noorwali M, Rawas M. Non surgical ablation of the gall bladder: an animal study. *Saudi Med J* 1993;14: 138-141.
28. Stephens S, Sternberg "Diagnostic Surgical Pathology" 3rd ed. Philadelphia (PA): Lippincott Williams and Wilkins;1999.
29. Mohan H, Punia RPS, Dhawan SB, Ahal S, Sekhon MS. Morphological spectrum of gallstone disease in 1100 cholecystectomies in North India, *Indian J Surg* 2005;67(3):227-235.

Address for Corresponding Author:**Dr. Asmat Kamal Ansari**

Professor physiology

Isra University Hyderabad

E-mail: asmatansari5@gmail.com