Original Article

Association of BMI with Elevated

Biochemistry

Values of CK-MB and cTnT in Acute Myocardial Infarction

1. Shazia Rashid 2. Uzma Faryal 3. Iram Fayyaz

1. Asstt. Prof. of Biochemistry, CMH Lahore Medical College, Lahore 2. Asstt. Prof. of Biochemistry, Women Medical College, Abbottabad 3. Assoc. Prof. of Biochemistry, CMH Lahore Medical College, Lahore

ABSTRACT

Objective: To determine the association of BMI with serum levels of cTnT & CK-MB isoenzyme in patients presented to hospital emergency with suspected myocardial infarction and in healthy individuals.

Study Design: Comparative cross sectional study.

Place and Duration of Study: This study was conducted at Post graduate medical institute, Lahore in collaboration with Punjab Institute of Cardiology Lahore from July 2010 to Dec 2010.

Materials and Methods: Serum concentration of CK-MB and Cardiac Troponin T were estimated in 80 patients of AMI (40-60 years of age both sexes) by Immunological UV assay and electrochemiluminescence immunoassay (ECLIA) respectively. 40 healthy controls were matched for age and sex.

Results: Low BMI was observed in patients with both sexes. The values of both CK-MB and cTnT were markedly raised in patients with acute myocardial infarction.

Conclusion: In the present study higher prevalence of risk factors and MI were seen in patients even with BMI $< 23 \text{ kg/m}^2$. Therefore recognition and adoption of BMI cutoffs represent a major step forward in redefining the risk stratification among Pakistanis.

Key Words: BMI, CK-MB, cTnT, acute myocardial infarction.

INTRODUCTION

Cardiovascular disease is the leading cause of death worldwide¹. According to a careful estimates nearly 100,000 individuals suffered from acute myocardial infarction in Pakistan, in 2002². Risk factors for ischemic heart disease include older age, smoking, hypercholesterolemia, diabetes with or without insulin resistance and obesity^{3,4,5,6}.

Diagnosis of acute myocardial infarction has only recently incorporated the use of biomarkers of cardiac injury⁷. The role of cardiac markers in the diagnosis, risk stratification, and treatment of patients with chest pain has continued to evolve. In most patients, the initial electrocardiogram (ECG) is nondiagnostic. Despite increased vigilance on the part of emergency physicians and high admission rates to exclude acute myocardial infarction (AMI), the rate of missed myocardial infarction (MI) continues to hover at 1.5-2%. Blood testing for biomarkers of myocardial injury plays an increasingly important role for the evaluation and diagnosis of patients with chest pain. The guidelines for the diagnosis of myocardial infarction (MI) have recently changed and prominently incorporate the results of cardiac marker testing in the clinical definition of MI. Creatine kinase-MB (CK-MB), cardiac Troponin T (cTnT), cardiac Troponin I (cTnI), myoglobin, homocysteine and C-reactive protein (CRP) are all used for assessment of the suspected acute myocardial infarction (AMI). CK-MB,

cTnT, and cTnI may also be used to identify and manage high-risk patients^{8,9,10,11}.

In early 1990s the diagnosis of MI depended heavily on the presence of an elevated CK-MB marker. However, the advent of troponin markers markedly increased the sensitivity and specificity for the diagnosis of cardiac injury and for that reason succeeded CK-MB as the gold standard for the diagnosis. A consensus guideline from the American College of Cardiology (ACC) and the European Society of Cardiology (ESC) has redefined AMI(40). According to these bodies, AMI is now defined as a typical rise and fall of biochemical markers (e.g., Troponin, CK-MB), associated with ischemic symptoms, new pathologic Q waves on ECG, ischemic ECG changes(ST-segment elevation or depression), coronary artery intervention or pathologic findings of AMI^{12,13}.

Patients with elevated cardiac Troponin levels but negative CK-MB who were formerly diagnosed with unstable angina or minor myocardial injury are now reclassified as non–ST-segment elevation MI (NSTEMI) even in the absence of diagnostic ECG changes¹⁴.

CK-MB is both a sensitive and specific marker for myocardial infarction. CK-MB usually becomes abnormal three to four hours after an MI, peaks in 10–24 hours, and returns to normal within 72 hours ^{15,16,17}. Cardiac Troponin T (cTnT) is a cardio-specific, highly sensitive marker for myocardial damage. Cardiac Troponin T increases approximately 3-4 hours after acute myocardial infarction (AMI) and may persist up

to two weeks thereafter^{18,19}. In contrast to ST-elevation myocardial infarction (STEMI), the diagnosis of non-ST elevation myocardial infarction (NSTEMI) heavily relies on cardiac Troponin T¹⁹. It is reported that MI is diagnosed when blood levels of cTnT are above the 99th percentile of the reference limit together with evidence of myocardial ischemia²⁰.

MATERIALS AND METHODS

This Comparative cross sectional study was conducted at Post graduate medical institute, Lahore in collaboration with Punjab Institute of Cardiology Lahore. Troponin T and CK-MB were measured in 80 patients of AMI (40-60 years of age both sexes).40 healthy controls were matched for age and sex. Patients with diabetes mellitus, renal disease or muscle dystrophy were excluded. Serum concentration of CK-MB and Cardiac Troponin T(cTnT) were estimated by UV assay and Immunological electrochemiluminescence immunoassay (ECLIA) respectively. The data was analyzed using SPSS 17 (Statistical Package For Social Sciences). P-value of <0.05 was considered statistically significant.

RESULTS

Study found that there are two groups of patients of AMI on the basis of raised cardiac markers; i.e. CK-MB and cTnT. In 32 male (group A) and 16 female patients (group A1), the level of cTnT was raised a few hundreds, while in 20 male (group B) and 12 female patients (group B1) cTnT may be raised as much as 2-5 thousands.

Table No.1: Relationship of age, BMI, CK-MB and cTnT in male and female patients of group A and A1 and their controls.

No of cases in parenthesis

Values are expressed as mean±SD

Variables	Male	Male	Female	Female
	patients	controls	patients	controls
	(32)	(24)	(20)	(16)
Age	54.41±	51.29±	58.00±	49.44±
(years)	9.94	2.46	6.83	4.84
BMI	23.28±	23.33±	23.45±	23.69±
	2.07	2.46	2.54	1.96
CK-MB	73.34±	9.79±	67.25±	10.69±
(U/L)	54.04**	5.24	53.91**	5.78
cTnT	255.95±	20.54±	282.52±	21.46±
(Pg/ml)	162.50**	11.10	214.95**	10.14

^{**}P<0.005 = Highly significant difference

In group A and A1 the mean age is 54-58 years and duration of chest pain is in a range of 6-7 hours. Their demographic characteristics showed a low BMI, sedentary life style, positive smoking history. Significant rise of serum CK-MB and cTnT are also noted.

In group B and B1, with unusual raised cardiac markers; CK-MB and cTnT, the mean age is more, being, 55-60 years and duration of chest pain is less in a range of 3-4 hours. Their demographic characteristics are similar to the first group. However an unusual rise of serum CK-MB and especially cTnT is noted.

Table No.2: Relationship of age, BMI, CK-MB and cTnT in male and female patients of group B and B1 and their controls.

No of cases in parenthesis

Values are expressed as mean ±SD

Variables	Male patients	Male controls	Female patients	Female controls
	(16)	(24)	(12)	(16)
Age	55.81±	51.29±	60.08±	49.44±
(years)	10.63	2.46	6.01	4.84
BMI	22.69±	23.33±	21.75±	23.69±
	2.75	2.46	3.08	1.96
CK-MB	130.44±	9.79±	87.67±	10.69±
(U/L)	107.39**	5.24	59.96**	5.78
cTnT	2870.06±	20.54±	2007.25±	21.46±
(Pg/ml)	2461.43**	11.10	1335.23**	10.14

^{**}P<0.005 = Highly significant difference.

DISCUSSION

Relationship of age, BMI and life style in male and female patients and their controls was also noted. An inverse relationship between low BMI and sedentary life style was observed. This is well in line with the different studies. These studies observed that the BMI of patients with AMI is < 23 kg/m². ^{21,22} Their study reported that low BMI was found to be an independent risk factor for MI. This could be explained by the fact that low BMI might have induced endothelial impairment in such populations²³. However a study found that body mass index of 28.5 or more had a significantly higher incidence of acute myocardial infarction. Study also found that body mass index did not contribute significantly to the risk of acute myocardial infarction in women²⁴.

Recently it is reported that BMI alone cannot be considered as an independent risk factor, as the study population had low BMI but had one or more modifiable risk factors²⁵.

CONCLUSION

Higher prevalence of risk factors and MI were seen in patients even with BMI < 23 kg/m^2 . These observations clearly support the recent WHO initiatives and its debates, to revise the normal limits of BMI. Hence, it would be advisable to redefine the BMI $\geq 23 \text{ kg/m}^2$ as overweight and BMI $\geq 25 \text{ kg/m}^2$ as obese for Pakistani population. Screening measures for risk factors of MI may be initiated for people with BMI $\geq 21 \text{ kg/m}^2$.

REFERENCES

- 1. World Health Organization. The world Health Report 2003-Shaping the future. Geneva, Switzerland: World Health Organization, 2003.
- 2. Iqbal P. Hyperhomocysteinemia and coronary artery disease in Pakistan. J Pak Med Assoc 2006; 56(6):282-5.
- 3. Ferdinandy P, Schulz R, Baxter GF. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 2007;59(4): 418-58.
- Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation. 1998; 97:1837-47.
- De Backer G, Ambrosioni E, Borch-Johnsen K, et al. For the Third Joint Task Force of European and other Societies on Cardiovascular Disease Prevention in Clinical Practice. Executive summary: European guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J 2003; 24: 1601–10.
- Hackam Daniel G, Anand Sonia S. Emerging Risk Factors for Atherosclerotic Vascular Disease: A Critical Review of the Evidence. JAMA 2003; 290(7):932-40.
- Ipert JS, Thygesen K, Antman E, Bassand JP. Myocardial infarction redefined –a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 2000; 36: 959-69.
- 8. James L. Januzzi Jr, Kent Lewandrowski, Thomas E. MacGillivray, John B, et al. A comparison of cardiac troponin T and creatine kinase-MB for patient evaluation after cardiac surgery. J Am Coll cardiol 2002;39:1518-23.
- 9. Lee H.S, Cross SJ, Garthwaite P, Dickie A, Ross I, Walton S, et al. Comparison of the value of novel rapid measurement of myoglobin, creatine kinase, and creatine kinase-MB with the electrocardiogram for the diagnosis of acute myocardial infarction. Br Heart J 1994; 71:311-15.
- de Winter RJ, Koster RW, Sturk A, Sanders GT. Value of myoglobin, troponin T and CK-MB in ruling out an acute myocardial infarction in the emergency room. Circulation 1995: 3401-7.
- 11. Hetland O, Dickstein K. Cardiac markers in the early hours of acute myocardial infarction: clinical performance of creatine kinase, creatine kinase MB isoenzyme (activity and mass concentration), creatine kinase MM and MB subforms ratios,

- Myoglobin and cardiac troponin T. Scand J Clin Lab Invest1996; 56(8): 701-13.
- 12. Ipert JS, Thygesen K, Jaffe A, White HD. The universal definition of myocardial infarction: a consenses document: Ischaemic heart disease. Heart 2008; 94:1335-41.
- 13. Rosalki SB, Roberts R, Katus HA, Giannitsis E, Ladenson JH, Fred S. Apple. Cardiac Biomarkers for Detection of Myocardial Infarction: Perspectives from Past to Present. Clin Chem 2004; 50:2205-13.
- Thygesen K, Alpert JS, Harvey D. White on behalf of the Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. J Am Coll Cardiol 2007;50:2173-95.
- 15. Braunwald E, Antman EM, Beasley JW, et al. ACC/AHA guideline update for the management of patients with unstable angina and non-ST segment elevation myocardial infarction. Circulation 2002; 106: 1893-1900.
- 16. Young GP, Gibler WB, Hedges JR, Hoekstra JW, Slovis C, Aghababian R, et al. Serial creatine kinase-MB results are sensitive indicator of acute myocardial infarction in chest pain patients with nondiagnostic electrocardiograms: the second Emergency Medicine Cardiac Research Group Study. Acad Emerg Med 1997; 4(9):869-77.
- 17. Kemp M, Donovan J, Higham H, Hooper J. Biochemical markers of myocardial injury. Br J Anaesth 2004; 93: 63-73.
- 18. Lindahl B, Diderholm E, Lagerqvist B, Venge P, Wallentin L. The FRISC II investigators. Mechanisms behind the prognostic value of Troponin T in unstable coronary artery disease: a FRISC II substudy. J Am Coll Card 2001;38: 979-86.
- 19. Latini R, Masson S, Anand IS, Missov E, Carlson M, Vago T, et al. Prognostic value of very low plasma concentrations of troponin T in patients with stable chronic heart failure. Circulation 2007; 116: 1242-49.
- Omland T, de Lemos JA, Christophi C, Rice MM, Jablonski KA, Tjora S, et al. on behalf: PEACE investigators. Distribution and determinants of very low levels of cardiac Troponin T in patients with stable coronary artery disease: the PEACE trial. Eur Heart J 2008; 9(202); 1342.
- 21. Pais P, Pogue J, Gerstein H, Zachariah E, Savitha D, Jayprakash S, et al. Risk factors for acute myocardial infarction in Indians: a case-control study. Lancet 1996; 348:358-63.
- 22. Ismail J, Jafar TH, Jafary FH, White F, Faruqui AM, Chaturvedi N. Risk factors for non-fatal myocardial infarction in young South Asian adults. Heart 2004; 90:259-63.

- 23. Higashi Y, Sasaki S, Nakagawa K, Kimura M, Noma K, Hara K, et al. Low body mass index is a risk factor for impaired endothelium-dependent vasodilation in humans: role of nitric oxide and oxidative stress. J Am Coll Cardiol 2003; 42: 256-63.
- Tomilehto J, Salonen J, Marti B, Jalkanen L, Puska P, Nissinen A et al. Body weight and risk of myocardial infarction and death in the adult population of eastern Finland. Br Med J 1987; 295:623–27.

25. Meenakshisundaram R, Rajendiran C, Thirumalaikolundusubramanian P, Agarwal D. Risk factors for myocardial infarction among low socioeconomic status South Indian population. Diabetology & Metabolic Syndrome 2010; 2:32.

Address for Corresponding Author:

Dr. Shazia Rashid, Assistant Professor of Biochemistry, CMH Lahore Medical College, Lahore. Email: shazia.rashid9@gmail.com Contact No: 03233806847