

Lipid Profile in Females of Reproductive Age Group Using Injectable Contraceptives (Progestogen-only)

1. Uzma Faryal 2. Shazia Rashid 3. Iram Fayyaz

1. Asstt. Prof. of Biochemistry, WMC, Abbottabad 2. Asstt. Prof. of Biochemistry, CMH Lahore Medical College, Lahore 3. Assoc. Prof. of Biochemistry, CMH Lahore Medical College, Lahore

ABSTRACT

Objective: To determine and compare the values of lipid profile in married fertile females of reproductive age group using injectable contraceptives.

Study Design: Comparative cross sectional study.

Place and Duration of Study: This study was carried out in the Department of Biochemistry, Postgraduate Medical Institute, Lahore and Lahore General Hospital, Lahore from July 2010 to Dec 2010.

Materials and Methods: A total of 250 married fertile women in their reproductive age were selected. They were divided in two groups: Group 1 (controls) and Group 2 (injectable contraceptive users). Levels of serum total cholesterol, serum triglycerides, high density lipoprotein-cholesterol were measured using standard kits. Low density lipoprotein-cholesterol was calculated with Fried Wald equation. Results were analyzed by using student's t test. Informed consent was taken from each patient and control subject for this study.

Results: Injectable contraceptives cause significant decrease in HDL-C and significant increase in serum triglycerides and LDL-C.

Conclusion: It is suggested that Lipid profile should be estimated before starting every course (the course may be 3-6months) of injectable contraceptives to the subjects.

Key Words: lipid profile, injectable contraceptives, progestogens

INTRODUCTION

There are two main types of hormonal contraceptive formulations: these are combined methods which contain both estrogens and progestin, and progestogen only methods which contain only progesterone or one of its synthetic analogues that is progestins¹. More than 12 million women worldwide use injectable, progestin-only formulation over long intervals because of their efficacy and less side effects². Before starting hormonal contraceptives, measurement of lipid profile is recommended in women with dyslipaemias and alternative non hormonal contraceptive should be sought out if LDL-C is not below 160 mg/dl³.

Injectable contraceptives are convenient and highly effective methods for fertility regulation, being simple to administer and long acting. Injectable contraceptives affect lipids by increasing triglycerides and total cholesterol. A small decrease in serum HDL-C and a nominal increase in LDL-C have been reported by both of injectable contraceptives⁴. Both type of progestogen only injectables may induce changes in lipid metabolism, reducing HDL cholesterol and increasing the HDL:LDL cholesterol ratio⁵. The major health risks of injectables are cardiovascular diseases (CVD) particularly heart attacks (myocardial infarction), stroke and venous thromboembolism⁶. Clinical data showed that estrogen, progestins and androgens influenced lipoprotein metabolism, the study of the effects of steroidal contraceptives on lipid metabolism had

generated great interest⁷. There is increased risk of coronary heart disease (CHD) associated with elevated concentrations of plasma total cholesterol (TC) and low density lipoprotein (LDL), decreased plasma concentration of high density lipoprotein (HDL) and, in some circumstances, high levels of total triglycerides⁸. It is very important and essential when prescribing steroidal contraception that a careful medical history is taken to exclude either a personal or family history of thromboembolic disease and risk factors for venous thromboembolism⁹. As low dose progestins are not associated with thrombosis, WHO recommends initiation of progestin only contraceptives during postpartum period¹⁰. To rule out contraindications to use of hormones, physician should obtain thorough medical history, including cardiovascular risk factors, concurrent medications, allergies and health problems (past and current)¹⁰.

Progestin-only contraceptives may be preferable in some situations, in women having absolute or relative contraindications to estrogen, side-effects to estrogen containing hormonal contraception, lactation, and comfort and feasibility of formulations for long-term use¹¹. There are many types of progestins, each differing in its potency and affinity to the progesterone, estrogen and androgenic receptors¹². The two main progestogen-only injectables are depot medroxyprogesterone acetate (DMPA) and norethisterone enantate. Depot medroxyprogesterone acetate is the most commonly used and thoroughly studied injectable

contraceptive¹³. DMPA may adversely affect cardiovascular health on the long run¹⁴. There are marked differences between countries in patterns of contraceptive use both in types and extent of use. These differences reflect availability and accessibility as well as social and cultural attitudes towards fertility control, sexuality and roles of women in society. What is important is that any contraceptive used should not adversely affect the health of the user.

MATERIALS AND METHODS

This comparative cross sectional study was done at Lahore general hospital, Lahore. A total of 250 married fertile women in their reproductive age were selected. They were divided in two groups: Group 1 (controls) and Group 2 (injectable contraceptive users). Subjects included in group 1 (controls) were married fertile females in reproductive age group (15-49 yrs) have not used any kind of hormonal contraceptives and were non pregnant and non lactating. Subjects included in group 2 (injectable contraceptive users) were married fertile females in reproductive age group (15-49 yrs) using injectable contraceptive (progestogen only) at least for the last one year and were non pregnant and non lactating. Subjects with hypertension, cardio-vascular disease, diabetes mellitus, liver disease, abnormal nipple discharge and undiagnosed vaginal bleeding were excluded. Levels of serum total cholesterol, serum triglycerides, high density lipoprotein-cholesterol were measured using standard kits. Low density lipoprotein-cholesterol was calculated with Fried Wald equation. Results were analyzed by using student's t test. A 5% level of significance ($p \leq 0.05$) was taken.

RESULTS

The mean age of the patients in group 1 (control) was 30.8 ± 6.5 years and in group 2 (injectable contraceptives) was 32.6 ± 7.1 years. The majority of the patients in two groups were in age range from 20 to 40 years. For subjects in group 1 (control) and group 2 (injectable contraceptives), the mean \pm SD concentration of serum total cholesterol was 177.9 ± 40.8 mg/dl and 171.6 ± 26.1 mg/dl, respectively. The mean \pm SD concentration of serum total cholesterol was insignificantly ($p \leq 0.1$) increased in group 1 (control) as compared to group 2 (injectable contraceptives). For subjects in group 1 (control) and group 2 (injectable contraceptives) the mean \pm SD concentration of serum triglycerides was 129.1 ± 27.7 mg/dl and 140.7 ± 53.8 mg/dl, respectively. The mean \pm SD concentration of serum triglycerides was significantly ($p \leq 0.03$) increased in group 2 (injectable contraceptives) as compared to group 1 (control).

For subjects in group 1 (control) and group 2 (injectable contraceptives) the mean \pm SD concentration of serum HDL-C was 53.1 ± 7.6 mg/dl and 45.2 ± 3.0 mg/dl, respectively. The mean \pm SD concentration of serum

HDL-C was significantly ($p \leq 0.001$) decreased in group 2 (injectable contraceptives) as compared to group 1 (control). For subjects in group 1 (control) and group 2 (injectable contraceptives) the mean \pm SD concentration of serum LDL-C was 130.0 ± 14.9 mg/dl and 171.4 ± 4.7 mg/dl, respectively. The mean \pm SD concentration of serum LDL-C was significantly ($p \leq 0.001$) increased in group 2 (injectable contraceptives) as compared to group 1 (control).

Table No. 1: Comparison of mean total cholesterol, mean total triglyceride, mean HDL-C and mean LDL-C between group 1(control) and group 2 (injectable contraceptives)

Variables	*Group1 (n=125) (mean \pm SD)	**Group2 (n=125) (mean \pm SD)	t- value	p-value
Total cholesterol (mg/dl)	177.9 ± 40.8	171.6 ± 26.1	1.5	0.1
Total triglyceride (mg/dl)	129.1 ± 27.7	140.7 ± 53.8	2.2	***0.03
HDL-C (mg/dl)	53.1 ± 7.6	45.2 ± 3.0	11.3	***0.001
LDL-C (mg/dl)	130.0 ± 14.9	171.4 ± 4.7	29.4	***0.001

Key:

SD: Standard deviation

n: Number of patients

*Group-1: Controls

**Group-3: Subjects using Injectable Contraceptives (ICs)

***Statistically Significant value

DISCUSSION

All available contraception methods have both advantages and disadvantages, and it is up to the health provider and the patient to make a rational choice in each individual case. Present study included two groups: controls and injectable contraceptive users. There was insignificant decrease in TC and significant increase in TG in injectable contraceptive users as compared to control in our study. A study conducted by Ebele JI showed significant increase in TG and LDL-C while decrease in HDL-C which was in agreement with the results observed in the present study¹⁵. A significant decrease in HDL-C and significant increase in LDL-C in injectable contraceptive users as compared to control was seen in the present study. Similarly a small decrease in serum HDL-C and a nominal increase in LDL-C has been reported by progestogen only injectable contraceptives in another study¹⁶. Some workers found decrease in HDL-C and increase in LDL-C by injectable contraceptives which was in accordance to the present study¹⁷. Some authors reported beneficial effects of injectable contraceptives¹⁸.

Another study also showed that both type of progestogen only injectables may induce changes in lipid metabolism, reducing HDL cholesterol and

increasing the HDL:LDL cholesterol ratio¹⁹. HDL-C is involved in the reverse cholesterol transport from peripheral cells to the liver, prevents oxidation of LDL-C because of paraxonase in HDL-C. Paraxonase is synthesized in the liver and is HDL associated enzyme that inhibits oxidation of LDL-C²⁰. These adverse effects of progestogen only injectables on serum lipids were temporary and levels improved over time even if DMPA was continued²¹. In the present study, although hormonal contraceptives produce changes in the concentrations of lipid profiles and liver function tests but these were in their normal ranges.

CONCLUSION

Injectable contraceptive pills produced changes in lipid profile in the upper limits of the normal reference range. The normal reference range was not crossed. Based upon these conclusions, it is suggested that Lipid profile should be estimated before starting every course (the course may be 3-6months) of injectable contraceptives to the subjects.

REFERENCES

1. Beasley A, Estes C, Guerrero J, Westhoff C. The effect of obesity and low dose oral contraceptives on carbohydrates and lipid metabolism. *Contraception* 2012; 85: 446-52.
2. Yadav BK, Gupta RK, Gyawali P, et al. Effects of long-term use of depo-medroxyprogesterone acetate on lipid metabolism. *Korean J Lab Med* 2011;31(2):95-7.
3. Fallah S, Pour MS, Chadegani AR, Korani M. Adiponectin, leptin and lipid profiles evaluation in oral contraceptive pill consumers. *Archives of Gynecol* 2011;285 (6):1745-52.
4. Okeke CK, et al. Comparative Effects of Injectable and Oral Hormonal Contraceptives on Lipid Profile. *Europeon J Cardiovascular* 2012; 2(1): 2042-4884.
5. Schufelt CL, Merz NB. Contraceptive hormone use and cardiovascular disease. *J Am Coll Cardiol* 2009; 53: 221-31
6. Bhatena RK. The long acting progestogen only contraceptive injection: an update. *Br J Obstet Gynecol* 2001; 108: 3-8.
7. Macmohn AP. Hormonal contraceptive use. *Contraception* 2007;77:170-6.
8. Duvillard L, Dantin G, Florentin E, et al. Increased apolipoprotein A1 production rate and redistribution of high density lipoprotein size induced by estrogen plus progestin as Oral contraceptive. *J Clin Endocrinol Metab* 2009; 94 (12): 4891-7.
9. Daniels SR, Greer FR. Lipid screening and cardiovascular health in childhood. *Pediatrics* 2008; 12 (2): 198-208.
10. Syed S, Quereshi MA. Effect of hormonal contraception on lipid profile and lipoprotein cholesterol concentrations. *JCPSP* 2002; 12 (10): 593-8.
11. Stechna S, Mravcak S, Schultz P, Santolaya J. The Quick Start Contraception Initiation Method during the 6-week postpartum visit: an efficacious way to improve contraception in Federally Qualified Health Centers. *Contraception* 2012;12:188-94.
12. Adeyemi AS, Adekanle DA. Progestogen only injectables contraceptives: experience of women in Osogbo, south west Nigeria. *Annals of African Med* 2012;11(1): 27-31.
13. Yadav BK, Gupta RK, Gyawali P, et al. Effects of Long-term Use of Depo medroxy progesterone Acetate on Lipid Metabolism in Nepalese Women. *Korean J Lab Med* 2011;31(2):95-7.
14. Warren MP. Metabolic effects of contraceptive steroids. *Am J Med Sci* 2004;265: 4-21.
15. Ebele JI, Emeka EN, Ignatius CM, Peace UN, Ebele E. Effect of duration of use of hormonal contraceptives on liver function. *Res J Med Sci* 2009;3(2):52-55.
16. Bhatena RK. The long acting progestogen only contraceptive injection: an update. *Br J Obstet Gynecol* 2001; 108: 3-8.
17. Berenson AB, Rahman M, Wilkinson G. Effect of injectable and oral contraceptives on serum lipids. *Obstet Gynecol* 2009;114(4):786-94.
18. Lizarelli PM, Martins WP, Vieira CS, Soares GM, Franceschini SA, Ferriani RA and Patta MC. Both a combined oral contraceptive and depot medroxy-progesterone acetate impair endothelial function in young women. *Contraception* 2009;79:35-40.
19. kaunitz AM. Hormonal contraception in women of older reproductive age. *NEJM* 2008;358:1262-70.
20. Szlendak-Saner K, Radowick S, Skorzebska K. The impact of a new low dose Oral contraceptive containing drospirenone on lipid profile, carbohydrate metabolism and hepatic function. *Ginekol Pol* 2009; 80 (2): 99-102.
21. Mia AR, Siddiqui NI, Islam MN, Khan MR, Shampa S, Rukunuzzaman M. Effects of prolong use of injectable hormonal contraceptives on serum lipid profile. *Mymensingh Med J* 2005;14(1): 19-21.

Address for Corresponding Author:

Dr. Uzma Faryal,
Assistant Professor,
Department of Biochemistry,
Women Medical College,
Abbottabad.
Email: faryaluzma@hotmail.com
Contact No: 03339969971