Original Article

Procedure for prolapsed

Surgery

haemorrhoids versus Excisional Haemorrhoidectomy - A Systematic Review and Meta-Analysis

1. Zulfiqar Ali Shahid 2. Khalid Hussain Qureshi 3. Laraib Zulfiqar

1. Asstt. Prof. of Surgery, Unit-III 2. Assoc Prof. of Surgery Unit-I 3. Elective Medical Student, Nishtar Medical College, Multan

ABSTRACT

Objective: To assess the efficacy of Procedure for prolapsed haemorrhoids versus excisional haemorrhoidectomy to treat haemorrhoids.

Study Design: Randomised controlled trials comparing EH and PPH with \geq 15 patients.

Place and Duration of Study: This study was conducted at Nishtar Medical College, Multan from December 2011 to May 2012.

Materials and Methods: All articles addressing haemorrhoidectomy were identified using the Medline and Pubmed Web sites with the period of review extending from December 2011 to May 2012. Articles addressing PPH and EH were then reviewed. The search included in English language. All randomised controlled comparative trials and patient samples of \geq 15 patients were considered for the meta-analysis. The primary endpoints assessed were pain and time taken to return to normal activity. Secondary endpoints were bleeding, complications and residual symptoms, recurrence rates and re-interventions

Results: PPH was associated with less postoperative pain, earlier return to normal activities compared with EH. There was no difference between the two procedures in terms of complications. There were more recurrences after PPH.

Conclusion: Compared with EH, PPH is associated with less postoperative pain, earlier return to normal activity. The rate of recurrence appears higher with PPH.

Key Words: Haemorrhoids, EH (Excisional Haemorrhoidectomy), PPH (Procedure for prolapsed and haemorrhoides).

INTRODUCTION

Haemorrhoids, also known as piles, are enlarged and swollen blood vessels in or around the lower rectum and anus. When the pressure of these blood vessels is increased, they swell and form small lumps called haemorrhoids. The definitive surgical procedure is excisional haemorrhoidectomy (EH), which can be performed as either an open (Milligan-Morgan) or a closed (Ferguson) operation.^{1,5} More recently, Antonio Longo introduced the procedure for prolapse and haemorrhoids (PPH).⁶ Both procedures can be undertaken under general or regional anaesthesia^{7,8}

Whereas EH removes the prolapsed haemorrhoids, it does not address the underlying cause of both mucosal and haemorrhoidal prolapse; conversely PPH, by 'lifting' the prolapsed haemorrhoids and mucosa, replaces the haemorrhoidal cushions high in the anal canal, thus reestablishing the topographical relationship between the anal cushions and the rectal muscle layer. ¹⁶ PPH has also been called stapled haemorrhoidectomy, stapled haemorrhoidopexy and stapled anopexy. This meta-analysis was undertaken to critically compare these two procedures and assess their efficacy in the treatment of haemorrhoids.

MATERIALS AND METHODS

Meta-analysis: All studies using statistically valid outcome comparisons were used and random effects models were applied because of the heterogeneity of the studies. The software SPSS 15 was used for the meta-analysis and forest plots. All the complications were pooled together and odds ratios were calculated using a random effects model. Where a meta-analysis could not be calculated, the outcomes were qualitatively reviewed.

Data Sources: Literature review using Medline, Pubmed web sites. Articles addressing PPH(Procedure for prolapsed and haemorrhoides) and EH(Excisional Haemorrhoidectomy) were included.

13

RESULTS

Selection of data sets for analysis: Thirty-seven studies with 1550(EH 1000 and PPH 550) patients were identified comparing the two procedures. Inclusion and exclusion criteria were reported in all studies but were varied. The excluded studies were those which were lacking randomisation.

Limitations of the studies: The indications for haemorrhoidectomy were inconsistent in that second, third and fourth-degree haemorrhoids were included. The parameters and outcome measures were not uniform and were either not clearly defined or defined differently in different studies. 'Time to return to work' and 'time to return to normal activity' were used interchangeably in some studies. The morbidity was neither defined nor standardised. Information on recurrence was inconsistent because of variable prolapse (recurrent symptoms, haemorrhoids alone or in combination) and their timelines. The patients studied were therefore not homogeneous.

Data analysis: Pain was assessed in all studies and was measured with a 10-point visual analogue score (VAS). All studies showed superiority of PPH in terms of less pain for PPH. Time taken to return to normal activity was shorter for PPH in all studies. The overall recurrence rate was 1% following EH and 4% following PPH, making it four times higher after PPH.

When all complications were pooled together the average postoperative morbidity for all studies was 48% following EH and 47% following PPH. Incontinence-related problems were similar in both groups (20% v. 24% for EH and PPH respectively). Immediate postoperative bleeding occurred in 2% and 3% in EH and PPH respectively.

Table No.1: Comparison of Studies Comparing Pain between EH and PPH

between Bir and I I I	-			
Author	Year	No.	Maximal Pain	
			EH	PPH
Basdanis et al. ²⁶	2004	95	6 (3-4)	3 (1-6)
Bikhchandani et al.40	2005	84	6.4(1.4)	1.1(1.2)
Brown et al.37	2001	30	1 (0-10)	5 (2-10)
Cheetham et al.47	2003	31	9 (2-10)	5 (1-10)
Chung et al. ²⁷	2005	88	-	-
Correa-Rovelo et al. ²⁸	2002	84	7.2(1.7)	4.6(2.1)
Ganio et al. ²⁴	2001	100	-	-
Gravie et al. ⁷⁴	2005	126	-	-
Helmy ⁷²	2000	40	6.5(3-9)	2.1(0.2)
Hetzer et al. ²⁹	2002	40	-	-
Ho et al. ³⁰	2000	119	5 (0.4)	4.8(0.4)
Kairaluoma et al.30	2003	60	4.3(1-6)	1.8(0.1)
Kraka et al. ⁶⁵	2003	50	3.7	2.4
Lau et al. ³¹	2004	24	4.7(3.4)	5.4(3.4)

Metaanalysis: The studies used in the meta-analysis addressed return to normal activity (12 studies, 1 178 patients), pain (8 studies, 815 patients). All effect sizes refer to the comparison of patients undergoing PPH (experimental arm) versus those undergoing EH (control arm). A sensitivity analysis was done and showed that the fixed effects analysis was not robust enough. Furthermore the tests for heterogeneity in all the studies used for the meta-analysis showed them to be heterogeneous (p<0.001). For these reasons the random effects model was used.

Table No.2: Comparison of complications and residual symptoms in 24 studies comparing EH and PPH

	EH	PPH		
	(N=1 170)	(N=1 200)		
Complications and	N(%)	N(%)		
residual symptoms				
Nausea and vomiting	3(0.2)	4(0.3)		
Sypsis	2(0.2)	1(0.1)		
Wound dehiscence	43(4)	2(0.2)		
Urinary retention	73(6)	82(7)		
Faecal Impaction	23(2)	9(1)		
Tenesmus	4(0.3)	10(1)		
Thrombosis of residual	6(0.5)	14(1)		
haemorrhoids				
Thrombosed external	3(0.2)	8(0.6)		
'piles'				
Urgency	11(0.9)	18(1.5)		
Pruritus	50(4)	28(2)		
Persistent pain	30(3)	28(2)		
Anal fissure	11(0.9)	12(1)		
Anal fistula	1(0.1)	0		
Skin tags	50(4)	66(5.5)		
Oedema	10(1)	10(1)		
Residual haemorrhoids	5(0.4)	20(1.7)		
Soiling	73(6)	23(1.9)		
Stenosis	29(3)	19(2)		
Bleeding within 24 hours	11(1)	32(3)		
Bleeding after 24 hours	54(5)	30(3)		
Bleeding undefined	46(4)	37(3)		
Incontinence (undefined)	14(1)	10(1)		
Incontinence (solids)	4(0.3)	4(0.3)		
Incontinence (liquids)	9(0.8)	3(0.3)		
Incontinence (gas)	20(2)	14(1)		
Total incontinence	47(4)	41(2.6)		
Total morbidity	567 (48%)	408(34%)		
Recurrence				
Recurrent haemorrhoids	3	6		
Recurrent prolapsed	1	31		
Recurrent symptoms	8	12		
Undefined recurrence	3	6		
Total recurrence	14(1%)	55(4%)		
Information obtained from all the studies comparing the				

Information obtained from all the studies comparing the two procedures.

N= Total number of patients with complication

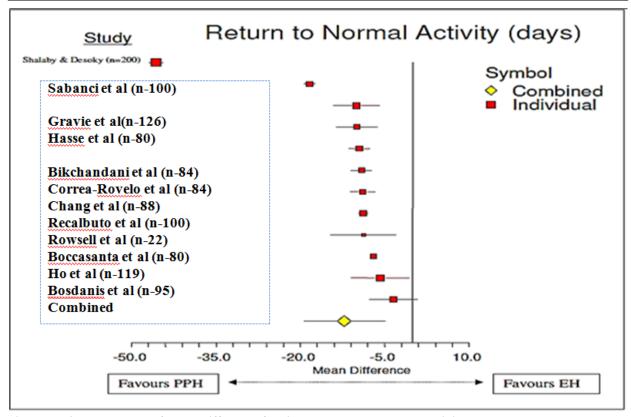


Figure No.3: Forest plots of mean difference for time to return to normal activity.

DISCUSSION

PPH shows superiority over EH in that it is associated with less postoperative pain and more rapid return to normal activity. Both procedures were followed by a number of complications and residual symptoms but certain complications tend to occur more after one procedure than the other and vice versa.

The higher stenosis rate following EH was not surprising as this is a known complication of EH.

The presence of more prolapses after PPH was unexpected considering that PPH is designed to limit mucosal prolapse.

The cause of persistent anal pain after PPH in some patients remains uncertain.³² Significant complications specifically associated with PPH have been reported. These include rectal stenosis (10)^{24,17}persistent pain (5),³³rectal perforation (5),¹⁶⁻²⁵anal sphincter injury (1),³⁴. With the exception of bleeding, none of these complications was readily found in any of the studies included in the meta-analysis. They may therefore be expected more during the early learning phase of the procedure. Although none of the studies had recurrence as a primary endpoint it should be a focus of future studies since from the data presented here the rate of recurrence was four times higher following PPH. Most of the studies have had short-term follow-up, with only four having >24 months' follow-up.^{19-21,37}.

The earlier return to normal activity after PPH is multifactorial and although some of the purely operation-dependent factors such as reduced pain, shorter hospital stay and reduced soiling play a role, other social and cultural practices also affect this parameter.²²

CONCLUSION

Short-term results demonstrate superiority of PPH over EH in terms of pain, earlier return to normal activity. This must be tempered by what appears to be a higher risk of recurrence which may or may not require further surgery. PPH cannot surpass EH as the best long-term cure for haemorrhoids. There are compelling reasons for EH which cannot be met by PPH including acutely incarcerated and thrombosed haemorrhoids and presence of gangrene.

Since both operations are associated with satisfactory results and since failure of PPH can be managed by EH it is advisable that all surgeons learn both techniques. Surgeons should be aware that PPH may result in damage to the internal anal sphincter and other complications which although exceptionally rare may be life-threatening, and that EH is associated with its own set of more common but highly disturbing problems such as postoperative pain and anal stenosis

REFERENCES

- Madoff RD, Fleshman JW. American Gastroenterological Association technical review on the diagnosis and treatment of hemorrhoids. Gastroenterol 2004; 126: 1463-1473.
- 2. Sardinha TC, Corman ML. Hemorrhoids. Surg Clin North Am 2002; 82: 1153-1167.
- Senagore AJ. Surgical management of hemorrhoids. J Gastrointest Surg 2002; 6: 295-297.
- Tucker H, George E, Barnett D, et al. NICE technology appraisal on stapled haemorrhoidopexy for the treatment of haemorrhoids. Ann R Coll Surg Engl 2008; 90: 82-84.
- McRae HM, McLeod RS. Comparison of hemorrhoidal treatment modalities. A metaanalysis. Dis Colon Rectum 1995; 38: 687-694.
- Longo A. Treatment of haemorrhoidal disease by reduction of mucosa and haemorrhoidal prolapse with a circular suturing device: a new procedure. Proceedings of the 6th World Congress of Endoscopic Surgery, Rome 1998;777-784.
- Esser S, Khubchandani I, Rakhmanine M. Stapled hemorrhoidectomy with local anesthesia can be performed safely and cost-efficiently. Dis Colon Rectum 2004; 47: 1164-1169.
- Nisar PJ, Acheson AG, Neal KR, et al. Stapled hemorrhoidopexy compared with conventional hemorrhoidectomy: systemic review of randomized, controlled trials. Dis Colon Rectum 2004; 47: 1837-1845.
- 9. Hunt L, Luck AJ, Rudkin G, et al. Day-case haemorrhoidectomy. Br J Surg 1999; 86: 255-258.
- 10. Kairaluoma M, Nuorva K, Kellokumpu I. Day-case stapled (circular) vs diathermy hemorrhoidectomy. Dis Colon Rectum 2003; 46: 93-99.
- 11. Singer MA, Clintron JR, Fleshman J, et al. Early experience with stapled hemorrhoidectomy in the United States. Dis Colon Rectum 2002;45:360-367.
- 12. Guy RJ, Seow-Choen F. Septic complications after treatment of haemorrhoids. Br J Surg 2003; 90: 147-156.
- 13. Thompson-Fawcett MW, Cook TA, Baigrie RJ, et al. What patients think of day surgery proctology. Br J Surg1998; 85: 1388.
- 14. Beattie GC, MacAdam TK, McIntosh SA, et al. Day case stapled haemorrhoidopexy for prolapsing haemorrhoids. Colorect Dis 2006; 8: 56-61.
- 15. Plocek MD, Kondylis LA, Duhan-Floyd N, et al. Hemorrhoidopexy staple line height predicts return to work. Dis Colon Rectum 2006; 49: 1905-1909.
- Altomare DF, Rinaldi M, Sallustio PL, et al. Longterm effects of stapled haemorrhoidectomy on internal anal function and sensitivity. Br J Surg 2001; 88: 1487-1491.

17. Hintze J. NCSS and PASS. Number Cruncher Statistical Systems.wwwncss com 2001 (accessed 29 October 2008).

15

- 18. Goulimaris I, Kanellos I, Christoforidis E, et al. Stapled haemorrhoidectomy compared with Milligan-Morgan excision for the treatment of prolapsing haemorrhoids: a prospective study. Eur J Surg 2002;168: 621-625.
- 19. Mattana C, Coco C, Manno A, et al. Stapled hemorrhoidopexy and Milligan Morgan hemorrhoidectomy in the cure of fourth-degree hemorrhoids: Long term evaluation and clinical results. Dis Colon Rectum 2007; 50: 1770-1775.
- Au-Yong I, Rowsell M, Hemingway DM. Randomised controlled clinical trial of stapled haemorrhoidectomyvs conventional haemorrhoidectomy: a three and half year follow-up. Colorect Dis 2004: 6: 37-38.
- 21. Smyth EF, Baker RP, Wilken BJ, et al. Stapled versus excision haemorrhoidectomy: long term follow-up of a randomised controlled trial. Lancet 2003; 361: 1437.
- 22. Mehigan BJ, Monson JRT, Hartley JE.Stapling procedure for haemorrhoids versus Milligan-Morgan haemorrhoidectomy: randomised controlled trial. Lancet 2000; 355: 782-785.
- 23. Rowsell M, Bello M, Hemingway DM. Circumferential mucosectomy (stapled haemorrhoidectomy) versus conventional haemorrhoidectomy: randomised controlled trial. Lancet 2000; 355: 779-781.
- 24. Ganio E, Altomare DF, Gabrielli F, et al. Prospective randomisedmulticentre trial comparing stapled with open haemorrhoidectomy. Br J Surg 2001; 88: 669-674.
- Ganio E, Altomare DF, Milito G, et al. Long-term outcome of a multicentrerandomised clinical trial of stapled haemorrhoidectomy versus Milligan-Morgan haemorrhoidectomy. Br J Surg 2007; 94: 1033-1037.
- 26. Basdanis G, Papadopoulos VN, Michalopoulos A, et al. Randomized clinical trial of stapled hemorrhoidectomyvs open with Ligasure for prolapsed piles. Surg Endosc 2005;19:235-239.
- 27. Chung CC. Stapled hemorrhoidectomyvs harmonic scalpel hemorrhoidectomy: A randomized trial. Dis Colon Rectum 2005; 48: 1215-1219.
- 28. Correa-Rovelo JM, Tellez O, Obregón L, et al. Stapled rectal mucosectomyvs closed hemorrhoidectomy. A randomised, clinical trial. Dis Colon Rectum 2002; 45:1367-1375.
- 29. Hetzer FH, Demartines N, Handschin AE, et al. Stapled vs excision hemorrhoidectomy. Long term results of prospective randomized trial. Arch Surg 2002; 137: 337-340.
- 30. Ho Y-H, Cheong W-K, Tsang C, et al. Stapled hemorrhoidectomy cost and effectiveness.

- Randomised controlled trial including incontinence scoring, anorectalmanometry and endoanal ultrasound assessments at up to three months. Dis Colon Rectum 2000; 43: 1666-1675.
- 31. Lau PYY, Meng WCS, Yip AWC. Stapled haemorrhoidectomy in Chinese patients: A prospective randomised control study. Hong Kong Med J 2004; 10: 373-377.
- 32. Ortiz H, Marzo J, Armendariz P. Randomised clinical trial of stapled haemorrhoidopexy versus conventional diathermy haemorrhoidectomy. Br J Surg 2002; 89: 1376-1381.
- 33. Ortiz H, Marzo J, Armendariz P, et al. Stapled hemorrhoidectomyvs diathermy excision for fourth degree hemorhoids: a randomised clinical trial and review of the literature. Dis Colon Rectum 2005; 48: 809-815.
- 34. Pavlidis T, Papaziogas B, Souparis A, et al. Modern stapled Longo procedure vs conventional Milligan-Morgan hemorrhoidectomy: a randomised controlled trial. Int J Colorect Dis 2002; 17: 50-53.

- 35. Palimento D, Picchio M, Attanasio U, et al. Stapled and open hemorrhoidectomy: randomized controlled trial of early results. World J Surg 2003; 27: 203-207.
- 36. Brown SR, Ballan K, Ho E, et al. Stapled mucosectomy for acute thrombosed circumferentially prolapsed piles: a prospective randomised comparison with conventional haemorrhoidectomy. Colorect Dis 2001;3:175-178.
- 37. Boccasanta P, Capretti PG, Venturi M, et al. Randomized controlled trial between stapled circumferential mucosectomy and conventional circular hemorrhoidectomy in advanced hemorrhoids with external mucosa prolapse. Am J Surg 2001; 182: 64-68.

Address for Corresponding Author: Dr. Zulfiqar Ali

Asstt. Prof. of Surgery, Unit-III, Nishtar Medical College, Multan