

Antibiogram Pattern of Urinary Tract Infections

Pattern of Urinary Tract Infections

Muhammad Tayyab Naeem¹, Abdul Rauf¹, Fazal-ur-Rehman Khan¹, Hammad Shafi²,
Saba Rasool³ and Zeeshan Shaukat⁴

ABSTRACT

Objective: To determine the susceptibility pattern of three most common uropathogens; *E. Coli*, *Enterococci* sp and *Klebsiella* sp.

Study Design: A cross-sectional study

Place and Duration of Study: This study was conducted at the Department of Urology, National Institute of Kidney Diseases, Shaikh Zayed Hospital, Lahore from 1st March to 30th June 2021.

Materials and Methods: One hundred and thirty patients were selected with confirmed UTI symptoms. Early morning mid-stream urine was collected in sterile wide mouth containers and exposed to CLED (a differential media) to get pure growth. The isolated microbes were subjected to Kirby-Bauer disk diffusion method to obtain antibiotic susceptibility pattern of each uropathogen. Muller Hilton agar plate was used to receive susceptibility pattern to test antibiotics. Uropathogens were declared sensitive, intermediate or resistant by using CLSI.

Results: *E.coli*, *Enterococci* sp and *Klebsiella* sp were found 46.20%, 33.10% and 21.70%, respectively in 130 clinically verified UTI patients. *Escherichia Coli* showed 90% sensitivity to Colistin and 86.70% to Nitrofurantoin. Whereas, *Enterococci* sp manifest 100% sensitivity to Linezolid, Teicoplanin and Gentamycin. *Klebsiella* sp exhibited maximum sensitivity to Aminoglycosides group (Amikacin 92.6% and Gentamycin, 92.6%).

Conclusion: *E. coli* was the most common pathogen in the urine of the UTI patients. Irrational consumption of antibiotics is increasing and the pipeline to develop new antibiotics is dry. Antibiotics should be used rationally in clinical setups employing locally designed antibiogram patterns.

Key Words: Antibiogram, Uropathogens, Antibiotics, Culture

Citation of article: Naeem MT, Rauf A, Khan FR, Shafi H, Rasool S, Shaukat Z. Antibiogram Pattern of Urinary Tract Infections. Med Forum 2022;33(3):49-52.

INTRODUCTION

Almost 150 million people are suffering from UTI in the world.¹ Incidences of patients suffering from UTI are expected to be 18/1000 per year in general population and ranked on second highest infections globally.² In Pakistan the UTI cases are on the rise which accounts for 18-20 % of clinical diagnosis. Apart from financial constraint it significantly affects the quality of life of the patients.³ It is more prevalent in women of reproductive age which is influenced by educational and marital status.⁴ In comparison with males (7.4%), females (14.6%) are more prone to UTI.⁵

¹. Department of Urology, Shaikh Zayed Hospital, Lahore.

². Central Park Teaching Hospital, Lahore.

³. Department of Gynae, Services Hospital, Lahore

⁴. Department of Urology, Azra Naheed Medical College, Lahore.

Correspondence: Dr. M. Tayyab Naeem, House Officer, Urology Department, Shaikh Zayed Hospital, Lahore.

Contact No: 0321-4064820

Email: tayyabmn37@gmail.com

Received: September, 2021

Accepted: December, 2021

Printed: March, 2022

E.coli, *Enterococcus* sp and *Klebsiella* sp are the most common causative agents.⁶ *E.coli* has the ability to form intracellular capsules that enables them to evade the humoral immune response.⁷ *E.coli* is followed by *Enterococcus* sp in term of most common cause of UTI.² *Enterococcus* sp has intrinsic affinity to invade cells and form intracellular colonies to prevent host responses revealed by confocal microscopy.⁸ *Enterococcus faecalis* in *Enterococcus* sp has tropism in kidney which may persists in kidney for about two weeks causing pyelonephritis as presented in Murine Models.⁹ Unjudicious use of antibiotics to treat UTI has birth out the escalating prevalence of resistant uropathogens.¹⁰ Unauthorized prescription of antibiotics, lack of appropriate surveillance of Drug Regulating Authority of Pakistan (DRAP) and patient's education has given rise to resistant uropathogens.¹¹ Antibiogram is the generation of antibiotic susceptibility pattern of different uropathogens for rational use of antibiotics.¹² It is essential to ensure rational use of antibiotics as the clinical pipeline for new antibiotics is dry.¹³ In view of the above there is a dire need to carry out investigations on uropathogens of the UTI patients and determine the local antibiogram pattern for susceptibility of various antibiotics. Consequently, a study was designed at NIKD, SHZ Lahore to find out the local antibiogram pattern of uropathogens.

MATERIALS AND METHODS

This cross-sectional study was devised on UTI patients presented with complaints of burning micturition at NIKD, SZH, Lahore from March to June 2021. Consecutive sampling technique was opted for the study. 250 patients with burning micturition complaints were enrolled for this study. However, finally 130 patients were selected with confirmed UTI clinical symptoms like burning micturition, dysuria along with uropathogen growth of about 10^5 CFU/ml (Krass Criteria) in urine culture.

Identification and Isolation: Urine sampling was done under sterile conditions. Patients were provided with sterile containers with the instructions to void mid-stream urine in the morning into these containers that were tightly packed and sent to the Microbiology Department of SZH, Lahore. A sterile loop was entered into each container and 2 microliter film was produced in the loop and then placed on the CLED agar (Cystine-Lactose-Electrolyte Deficient). It was then placed inside the incubator at 35-37°C for 48 hours. Colony forming units were apparent on the CLED after 48 hours. Colonized bacterial growth was then placed on to the nutrient enriched agar (Muller Hilton Agar) to enhance the bacterial growth and then the antibiotic susceptibility plate is placed over the bacteria enriched Muller Hilton Agar for 48 hours. Disk Diffusion Test was performed by allowing the antibiotics to diffuse the bacteria enriched agar and zone of inhibition was measured by CLIS criteria to declare the sensitivity of a uropathogen to a specific antibiotic by measuring the zone of inhibition. Uropathogens were identified by Biochemical and Gram stain test.

Antibiotic Susceptibility Test: *E. coli* was exposed to Colistin, Amikacin, Fosfomycin, Gentamycin, Nitrofurantoin and Polymycin B antibiotics. *Enterococci* sp was subjected to Ampicillin, Amoxicillin, Linezolid, Teicoplanin, Vancomycin, Nitrofurantoin, Fosfomycin and Gentamycin. While *Klebsiella* was exposed to Pipracillin/Tazobactam, Colistin, Amikacin, Gentamycin, Imipenem and Polymycin B and antibiotic susceptibility pattern of each uropathogen was calculated. For the data interpretation Microsoft Excel was used to generate histograms.

RESULTS

Escherichia coli is found in 46.20% of the cases. *Enterococci* sp accounts for 33.10% that is the second highest infection revealed in our analysis whereas, *Klebsiella* sp is present in 21.70% of urine analysis of the UTI patients (Fig. 1).

Aminoglycosides sensitivity pattern for *E.coli* is following: Amikacin, Gentamycin and Nitrofurantoin show 85%, 88.3% and 86.70% sensitivity respectively. Fosfomycin is susceptible in 56.70% in *E.coli* sp. While

Polymycin B and Colistin susceptibility is detected in 85% and 90% of the UTI cases (Fig. 2).

Linezolid, Teicoplanin and Gentamycin are sensitive in 100% of cases. *Enterococci* sp is sensitive to following antibiotics: Ampicillin (74%), Amoxicillin (72%), Vancomycin (91%), Nitrofurantoin (86%), Fosfomycin (65%), Linezolid (100%), Teicoplanin (100%) and Gentamycin (100%) [Fig. 3].

Sensitivity of *Klebsiella* sp to various antibiotics is following: Pipracillin/Tazobactam (81.48%), Colistin (81.48%), Amikacin (92.60%), Gentamycin (92.60%), Polymycin B (88.80%) and Imipenem (96.29%) (Fig. 4).

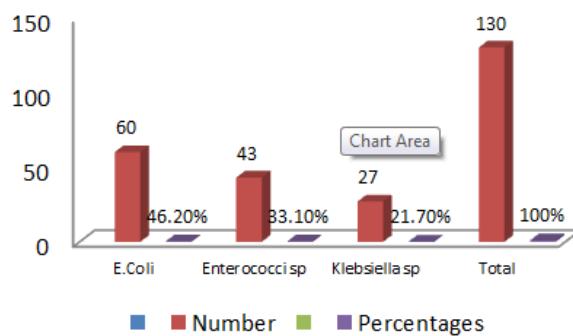


Figure No.1: Percentages of different uropathogens

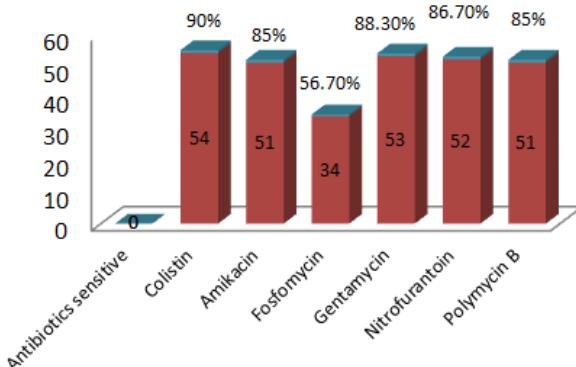


Figure No.2: Susceptibility pattern of *E. coli* to various antibiotics.

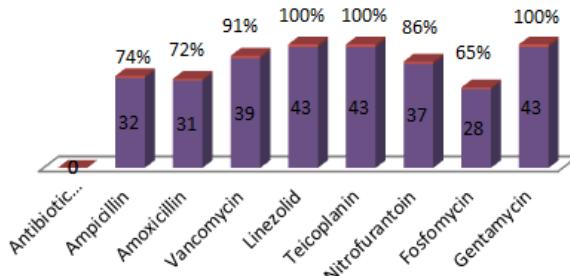
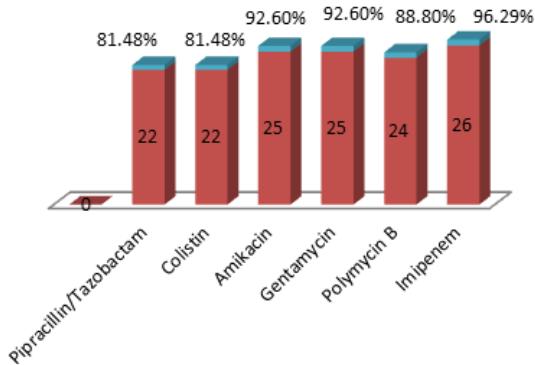



Figure No.3: Percentages of *Enterococcus* sp susceptibility to various antibiotics

Figure No.4: Percentages of Klebsiella sp sensitive to each antibiotic

DISCUSSION

The current study reveals that out of 130 UTI patients, E.coli was found in 46.20% cases. E.coli showed highest vulnerability to Colistin (90%), Amikacin (85%) and Polymycin B (85%) in our analysis. Kumar et al., (2013) have reported the ability of Nitrofurantoin to E.coli as an effective antibiotic which is consistent with our study.¹⁵ Antibiogram pattern of Aminoglycosides (Amikacin and Gentamycin) of this study showed similar results with the findings of Daoud et al. However, Fosfomycin has not been proven as effective as declared by Daoud et al.¹⁶ Outcome of the present work regarding efficacy of Colistin against E.coli shows consistency with the findings of Dharati et al.¹⁷ The present work shows that Amikacin is a rational treatment plan for urinary E.coli.¹⁸ Current investigation reveals that Polymycin B is effective against E.coli which is parallel with the work reported by Ezadi.¹⁹ Enterococcus sp accounts for 33.10% of the cases. Glycopeptides like Vancomycin and Teicoplanin shows 91% and 100% efficacy while Aminoglycosides like Nitrofurantoin has 86% effective against urinary Enterococcus sp in terms of antibiotic sensitivity and our findings are articulated with the work done by Maria.²⁰ and Muzammil et al. However, Teicoplanin sensitivity is seen in 72% of Enterococci sp in analysis retrieved by Muzammil et al.²¹ Enterococcus sp are found 100% susceptible to Gentamycin which is an essential antibiotic in armamentarium against urinary Enterococci sp that is in line with the analysis of Kumari.²² Linezolid and wide spectrum pencillinase inhibitors (Ampicillin and Amoxicillin) are effective against urinary Enterococci sp and our findings endorse the work of Muzammil (2020).²¹ Barros (2009) has reported the efficacy of Ampicillin (67%) and Amoxicillin (78%) against Enterococci sp similar to the findings of our study.²³ Teicoplanin and Linezolid have come up with stupendous result and encouraging efficacy against Enterococci sp as delineated in our study.²⁴

As far as the Klebsiella sp are concerned, it holds a share of about 16% of total cases.²⁵ Present study endorses the effectiveness of Amikacin for Klebsiella sp by 92.60% similar to the efficacy ratio calculated by

Virawan.²⁵ Present work indicates 81.48% efficacy of Klebsiella sp for Colistin that is parallel with the results presented by Kathia et al.²⁶ Polymycin B showed 88.80% effective regimes for Klebsiella sp in the current study while Bukhari (2019) has asserted 100% efficacy of Polymycin B for Klebsiella sp.¹⁷ Pipracillin/Tazobactam and Imipenem are an effective antibiotics for management of urinary Klebsiella sp as presented by the study of Abdullah et al.²⁷ Aminoglycosides (Gentamycin and Amikacin) have intrinsic activity to nullify urinary Klebsiella sp symptoms with reference to our investigation.^{26,28} and our study is in contrast with the Bouamri et al., (2015) who have claimed 21% efficacy for Gentamycin and 11% efficacy for Amikacin.²⁹

CONCLUSION

The present study reveals that E.Coli, Enterococcus sp and Klebsiella sp are the most common pathogens found in the UTI patients. E.coli and Klebsiella sp responded maximally to Polymycins and Aminoglycosides while, Enterococcus sp showed efficacious response to Glycopeptides, Oxazolidinone (linezolid), Penicillins and Aminoglycosides.

Author's Contribution:

Concept & Design of Study:	Muhammad Tayyab Naeem
Drafting:	Abdul Rauf, Fazal-ur-Rehman Khan
Data Analysis:	Hammad Shafi, Saba
Revisiting Critically:	Rasool, Zeeshan Shaukat Muhammad Tayyab Naeem, Abdul Rauf
Final Approval of version:	Muhammad Tayyab Naeem

Conflict of Interest: The study has no conflict of interest to declare by any author.

REFERENCES

1. Walter E, Stamm S, Norrby R. Urinary Tract Infections: Disease Panorama and Challenges. *J Infect Diseases* 2001;183:S1–S4.
2. Sohail M, Khurshid M, Saleem HG, Javed H, Khan AA. Characteristics and antibiotic resistance of urinary tract pathogens isolated from Punjab, Pakistan. *Jundishapur J Microbiol* 2015;8(7): e19272.
3. Wagenlehner F, Wullt B, Ballarini S, Zingg D, Naber KG. Social and economic burden of recurrent urinary tract infections and quality of life: a patient web-based study (GESPRIT). *Expert Rev Pharmacoecon Outcomes Res* 2018;18(1):107-117.
4. Saber, Sadia, Yasmin N, Alam MT, Hossain MM, Alam RF. Study on Urinary Tract Infection Among Females of Reproductive Age Group in Tertiary Care Teaching Hospital, Dhaka, Bangladesh. *Eur J Medl and Health Sciences* 2021;3(1):85-89.

5. Krati RV, Sanjeev D. Antibiotic sensitivity pattern of bacterial isolates recovered from clinical samples at Tertiary Care Hospital in Western UP, India. *Int. J Health and Clin Res* 2021;4(9):1-8.
6. Álvarez AE, Campo NA, García BM. Urinary infection in the elderly. *Infección urinaria en el anciano. Rev Clin Esp (Barc)* 2019;219(4):189-193.
7. Rosen DA, Hooton TM, Stamm WE, Humphrey PA, Hultgren SJ. Detection of intracellular bacterial communities in human urinary tract infection. *PLoS Med* 2007;4(12):e329.
8. Horsley H, Malone-Lee J, Holland D, Tuz M, Hibbert A. *Enterococcus faecalis* subverts and invades the host urothelium in patients with chronic urinary tract infection. *PLOS One* 2013;8(12):e83637.
9. Kau AL, Martin SM, Lyon W, Hayes E, Caparon MG, Hultgren SJ. *Enterococcus faecalis* tropism for the kidneys in the urinary tract of C57BL/6J mice. *Infect Immun* 2005;73(4):2461-2468.
10. Chakupurakal R, Ahmed M, Sobithadevi DN, Chinnappan S, Reynolds T. Urinary tract pathogens and resistance pattern. *J Clin Pathol* 2010;63(7):652-654.
11. Ayukekpong JA, Ntemgwia M, Atabe AN. The threat of antimicrobial resistance in developing countries: causes and control strategies. *Antimicrobial Resistance and Infection Control*; London 2017;6: DOI:10.1186/s13756-017-0208-x.
12. Joshi S. Hospital antibiogram: a necessity. *Ind J Med Microbiol* 2010;28(4):277-280.
13. Antibacterial agents in clinical development: an analysis of the antibacterial clinical development pipeline. Geneva: World Health Organization; 2019.
14. Cullen IM, Manecksha RP, McCullagh E. An 11-year analysis of the prevalent uropathogens and the changing pattern of *Escherichia coli* antibiotic resistance in 38,530 community urinary tract infections, Dublin 1999-2009. *Irish J Med Sci* 2013;182(1):81-89.
15. Kumar Y, Sood S, Sharma A, Mani KR. Antibiogram and characterization of resistance markers among *Escherichia coli* Isolates from urinary tract infections. *J Infect Dev Ctries* 2013; 7:513-519.
16. Daoud N, Hamdoun M, Hannachi H, Gharsallah C, Mallekh W, Bahri O. Antimicrobial Susceptibility Patterns of *Escherichia coli* among Tunisian Outpatients with Community-Acquired Urinary Tract Infection (2012-2018). *Curr Urol* 2020;14(4): 200-205.
17. Shah D, Shah A, Patel L, Pethani J, Limbachia U, Shah H. Microbiological Profile and Antibiogram of Uropathogens Isolated at a Tertiary Care Hospital. *JKIMSU* 2021;10:1.
18. Kuti JL, Wang Q, Chen H, Li H, Wang H, Nicolau DP. Defining the potency of amikacin against *Escherichia coli*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa*, and *Acinetobacter baumannii* derived from Chinese hospitals using CLSI and inhalation-based breakpoints. *Infect Drug Resist* 2018;11:783-790.
19. Ezadi F, Ardebili A, Mirnejad R. Antimicrobial Susceptibility Testing for Polymyxins: Challenges, Issues, and Recommendations. *J Clin Microbiol* 2019;57(4):e01390-18.
20. Rudy M, Nowakowska M, Wiechuła B, Zientara M, Radosz-Komoniewska H. Analiza lekowrazliwości *Enterococcus* spp. izolowanych z moczu. Antibiotic susceptibility analysis of *Enterococcus* spp. isolated from urine. *Przegl Lek* 2004;61(5):473-476.
21. Muzammil M, Adnan M, Sikandar S. Study of Culture and Sensitivity Patterns of Urinary Tract Infections in Patients Presenting with Urinary Symptoms in a Tertiary Care Hospital. *Cureus* 2020;12(2):e7013.
22. Kumari N, Ghimire G, Magar JK, Mohapatra TM, Rai A. Antibiogram pattern of isolates from UTI cases in Eastern part of Nepal. *Nepal Med Coll J* 2005;7(2):116-8.
23. Barros, Milton, Martinelli, Reinaldo, Rocha, Heonir Enterococcal urinary tract infections in a university hospital: clinical studies. *Brazilian J Infectious Diseases* 2009;13:294-296.
24. Krati RV, Sanjeev D. Antibiotic sensitivity pattern of bacterial isolates recovered from clinical samples at tertiary care hospital in western UP, India. *Int J Health Clin Res* 2021;4(9):1-8.
25. Amandeep KS, Amandeep K. Antibiogram of *Klebsiella pneumoniae* isolated from urine samples in a tertiary care hospital of Western Punjab. *SSRG Int. J Med Sc* 2020;7(9):7-11.
26. Kuti JL, Wang Q, Chen H, Li H, Wang H, Nicolau DP. Defining the potency of amikacin against *Escherichia coli*, *Klebsiella pneumoniae*, *Pseudomonas aeruginosa* and *Acinetobacter baumannii* derived from Chinese hospitals using CLSI and inhalation-based breakpoints. *Infect Drug Resist* 2018;11:783-790.
27. Kathia UM, Munir T, Fateh F, Ahmad A, Amjad A, Afzal MF. Antimicrobial Resistance Patterns: Review of the Antibiogram of a Surgical Unit in a Public Tertiary Care Hospital of Pakistan. *Cureus* 2020;12(10):e11159.
28. Shah D, Shah A, Patel L, Pethani J, Limbachia U, Shah H. Microbiological Profile and Antibiogram of Uropathogens Isolated at a Tertiary Care Hospital. *JKIMSU* 2021;10:1.
29. Abdullah FE, Mushtaq A, Irshad M, Rauf H, Afzal N, Rasheed A. Current efficacy of antibiotics against *Klebsiella* isolates from urine samples - a multi-centric experience in Karachi. *Pak J Pharm Sci* 2013;26(1):11-15.
30. Elizabeth V. Dray, J. Quentin Clemens. Recurrent urinary tract infections in patients with incomplete bladder emptying: is there a role for intravesical therapy? *Translational Androl Urol (Functional Urology)* 2017;6:Supplement 2.