Original Article

Prevalence of Renal Artery Stenosis in Hypertensive patients on **Treatment Undergoing Coronary**

Renal Artery Stenosis in **Hypertensive** patients on **Treatment**

Angiography; In Multi Cardiac Centers

Murtada Ali Jassim¹, Ghazi Farhan Haji², Qassim Mudalal Ubaid³, Nagham Kareem⁴ and Mazin Basil Mizher Alkarkhi²

ABSTRACT

Objective: To determine the prevalence of renal artery stenosis.

Study Design: The cross-sectional study

Place and Duration of Study: This study was conducted at the Iraqi Center of Heart Diseases and Baghdad Cardiac Center Iraq from 1st August 2023 to 30th June 2024.

Methods: Sixty hypertensive patients who experience elective coronary angiography were enrolled. They were divided into two groups, controlled and uncontrolled hypertension.

Results: The mean age was 61.4 years and 53.3% males. The majority of them had uncontrolled hypertension (70%), diabetes (60%), and dyslipidemia (65%). Abnormalities were observed in 41.7 percent of patients on coronary angiography and the severe coronary disease was present in 25 percent. RAS was identified in 15 per cent and had a strong correlation with the abnormal angiography coronary findings (P = 0.002) and ineffective control of hypertension (P = 0.033). There was no significant correlation with diabetes, dyslipidemia, smoking, and echocardiographic outcomes.

Conclusion: Renal artery stenosis is one of the frequent observations in hypertensive patients with coronary artery disease, which requires effective blood pressure management and multidisciplinary approach to minimize cardiovascular and kidney problems.

Key Words: Hypertension, Renal artery stenosis, Coronary artery disease, Atherosclerotic.

Citation of article: Jassim MA, Haji GF, Ubaid OM, Kareem N, Alkarkhi MBM. Prevalence of Renal Artery Stenosis in Hypertensive patients on Treatment Undergoing Coronary Angiography; In Multi Cardiac Centers. Med Forum 2025;36(11):64-68. doi:10.60110/medforum.361113.

INTRODUCTION

Renal artery stenosis (RAS) is a vascular disease that has a massive impact on cardiovascular health of patients with hypertension and coronary artery disease (CAD).¹ It is a constriction of the renal artery(s) or arteries, causing less blood access to the kidneys and resulting in permanent high blood pressure, and eventual kidney failure.2

- ^{1.} Al-Zahraa Teaching Hospital, Wasit Iraq
- ^{2.} Baghdad University, College of Medicine, Iraq
- ^{3.} Iraqi Center for Heart Disease, Iraq
- ^{4.} Ibn Al-Nafees Hospital, Iraq

Correspondence: Murtada Ali Jassim, Senior Interventional Cardiologist at Al-Zahraa Teaching Hospital, Wasit Iraq. Contact No: +9647719964439

Email: mortada.ali2202d@comed.uobaghdad.edu.iq

Received: February, 2025 March, 2025 Reviewed: Accepted: July, 2025

Uncontrolled hypertension is considered to be one of the predisposing factors and outcomes of RAS.³ The World Health Organization says that uncontrolled hypertension occurs when the blood pressure is 140/90mmHg or higher regardless of treatment or no treatment. Hypertension is a significant cause of stroke, heart attack and kidney disease and affects over 21 percent of the world adult population.4

Dysfunction in renal perfusion initiates the reninangiotensin-aldosterone system (RAAS) leading to the release of angiotensin II and aldosterone which elevates blood pressure by causing vasoconstriction and sodium reabsorption. This produces a vicious cycle whereby hypertension worsens the RAS and CAD.⁵ Renal artery stenosis makes CAD more difficult by enhancing myocardial ischemia because decreased renal blood flow imposes additional hemodynamic load on the heart, and it may trigger cardiac events.6 Furthermore, the treatment of hypertension among CAD patients with RAS is complicated due to the fact that the usual antihypertensive medications may deteriorate the renal hypoperfusion. Thus, the maintenance of renal perfusion and blood pressure should be carefully combined with the efforts of interventional radiologists, cardiologists, and nephrologists.^{7,8}

Imaging methods that are commonly used in diagnosing RAS include Doppler ultrasound, magnetic resonance angiography (MRA), computed tomography angiography (CTA), or conventional angiography, which are able to determine the extent and location of stenosis.⁹ Renal artery stenosis-based interventions are necessary in hypertensive CAD patients to restore the renal perfusion, blood pressure, and cardiovascular risk of hypertensive patients.¹⁰ It can be treated with pharmacological therapy with RAAS inhibitors, calcium channel blockers, and diuretics and revascularization, like percutaneous transluminal angioplasty (PTA) with or without a stent or surgery in selected cases. 11

Renal artery stenosis may be categorized according to its cause. The most widespread form is called atherosclerotic RAS, which is caused by the accumulation of the plaque reducing the lumen of the renal artery and reducing the perfusion of the kidneys. 12 Fibromuscular Dysplasia (FMD) is a atherosclerotic, non-inflammatory disease that is associated with unusual growth of cells of the arterial walls and results in localized or generalized stenosis, and may be common among women younger than 50.13 The congenital RAS is the result of inherited structural defects in the form of fibrous bands or inappropriate patterns of branching.¹⁴ Traumatic RAS is caused by renal or abdominal trauma of a blunt trauma, or surgery. 15 Inflammatory RAS can be a by-product of autoimmune or infectious vasculitis.⁵ Iatrogenic RAS is acquired after medical interventions that lead to the scarring of arteries i.e. catheterization¹⁶, whereas Radiation-Induced RAS develops after abdominal or pelvic radiotherapy of cancers. 17

There are a number of risk factors that are linked to RAS. The biggest determinant is age and the disease is more common among people above 50 years. Hypertension, diabetes, smoking, and dyslipidemia favor atherosclerosis and lead to the narrowing of the arteries. Familial history of cardiovascular disease, chronic kidney disease (CKD) and obesity also make one more susceptible. Besides, ethnicity and gender also play a role in prevalence African Americans are at more risk, and RAS associated with FMD is more prevalent in women younger than 50. 21

METHODS

The study was carried out in the Iraqi Center of Heart Diseases and Baghdad Cardiac Center, Iraq from 1st August 2023 to 30th June 2024 vide letter No. 4545/QM/Approval/4JKJD8 dated January 9, 2023 and 60 hypertensive patients who attended elective coronary angiography based on a referral following the detection of the presence of chest pain or ischemic signs with the help of non-invasive tests were enrolled. The patients were divided into controlled and uncontrolled hypertension (blood pressure below 140/90 mmHg and above 140/90 mmHg, respectively). The inclusion

criteria were a history of treated hypertension and a referral to coronary angiography with exclusion criteria being serum creatinine greater than 1.5 mg/dl and excessive use of contrast. The complete data were gathered that included demographics, medical and family history, laboratory tests (CBC, RBS, HbA1c, blood urea, serum creatinine, uric acid, lipid profile), ECG, echocardiography, and findings of coronary and renal angiography. All angiogram optimally assessed by a qualified interventional cardiologist and RAS was determined under the basis of significant stenosis. The statistical analysis was conducted and calculated using SPSS-26.0. The categorical data were tested with 2-tailed 125, p = -0.05 as the statistically significant p-value.

RESULTS

The mean age was 12.18±6.8 years. Most of the patients, 73.04% had poor control of hypertension, 36 (60%) patients had history of DM with an average of 11.53±6.04 years and 21 (35%) patients had history of IHD. None of the patients was chronic kidney disease (CKD). Another 39 (65%) patients and 27 (45%) patients were on statin therapy. Smoking was a common characteristic among the respondents with 33 (55%) patients being identified as smokers. Also, when analyzing premature coronary artery disease (CAD) 18 (30%) patients, a sedentary lifestyle was observed, 39 (65%) patients had a positive family history (Tables 1-2).

A strong and statistically significant association between renal and coronary angiography findings (P=0.002). Among patients with abnormal renal angiography, 88.9% also had abnormal coronary results, while only 11.1% showed normal coronary findings. However, no significant relationship was found between the site of renal lesions (ostial or proximal) and coronary outcomes (P=0.134), nor between the severity of renal lesions (critical or intermediate) and coronary results (P=0.134) [Table 3].

The duration of hypertension showed no significant difference between patients with abnormal and normal renal findings (P = 0.780). However, hypertension control was the only factor significantly associated with renal results - patients with well-controlled blood pressure all had normal renal findings, while 21.4% of those with poorly controlled hypertension showed abnormalities (P = 0.033). Diabetes, dyslipidemia, and smoking showed no significant associations with renal angiography outcomes (P = 0.238, 0.103, and 0.445,respectively), though abnormal findings were slightly more frequent among diabetics, dyslipidemic patients, and smokers. Overall, poor hypertension control emerged as the main clinical factor linked to abnormal renal angiography results, emphasizing the importance of effective blood pressure management in preventing renal vascular complications (Table 4).

Table No. 1: Descriptive statistics of the patients

Tuble 1 (of 1) 2 escriptive statistics of the patients			
Variable	Mean±SD		
Duration of hypertension	12.18±6.8		
Systolic blood pressur	154.3±23.5		
Diastolic blood pressure	90.9±16.3		
Duration of diabetes mellitus	11.53±6.04		

Table No. 2: Demographic features of the patients

Table No. 2: Demographic features of the patients						
Variable	Category	No.	%			
Control of	Good	18	30.0			
hypertension	Poor	42	70.0			
Dichotos mallitus	No	24	40.0			
Diabetes mellitus	Yes	36	60.0			
Control of diabetes	Good	11	18.3			
mellitus	Poor	25	41.7			
Ischemic heart	No	39	65.0			
disease	Yes	21	35.0			
Chronic kidney	No	60	100			
disease	Yes	0	0.0			
Dyalinidamia	Negative	21	35.0			
Dyslipidemia	Positive	39	65.0			
Use of statins	Negative	33	55.0			
Use of statilis	Positive	27	45.0			
Complein a status	Negative	27	45.0			
Smoking status	Positive	33	55.0			
Codontony life style	Negative	42	70.0			
Sedantary life style	Positive	18	30.0			
Family history of	Negative	21	35.0			
premature Coronary	Positive	39	65.0			
artery disease						

Table No. 3: Distribution of renal artery stenosis, side and severity with coronary angiography findings

and severity with coronary angregation; interings						
Variable for renal		Coronary angiography				P
		Abnormal		Normal		value
angiograp	шу	No.	%	No.	%	value
Renal	Abnormal	8	88.9	1	11.1	
angio-	Normal	17	33.3	34	66.7	0.002
graphy						
	Ostiallesion	2	66.7	1	33.3	
Site	Proximal	6	100.0	-	-	0.134
	lesion					
Carramitre	Critical	6	100.0	-	-	0.134
Severity	Intermediate	2	66.7	1	33.3	0.134

Table 5 shows no significant association between echocardiographic findings and renal angiography results (P=0.327). Among patients with normal echocardiograms, 10.5% had abnormal renal findings, while 9.5% of those with hypertensive heart disease and 27.8% with ischemic heart disease showed abnormal renal results. All patients with severe mitral regurgitation had normal renal findings. The mean ejection fraction was slightly lower in patients with abnormal renal findings (55.78±7.65%) compared to those with normal findings (59.94±7.60%), but the difference was not statistically significant (P=0.135).Overall, echocardiographic abnormalities did not significantly correlate with renal angiography outcomes.

Table No. 4: Analysis of variables associated with renal angiography findings

•		Coronary angiography				P value
Variable		Abnormal		Normal		
		No.	%	No.	%	
Height duration		12.78±6.379		12.08±6.962		0.780
Control of hyportonsion	Good	=	-	18	100.0	0.033
Control of hypertension	Poor	9	21.4	33	78.6	
Diabetes mellitus	No	2	8.3	22	91.7	0.238
	Yes	14	29.7	33	70.3	
Dyslipidemia	Negative	1	4.8%	20	95.2%	0.103
	Positive	16	24.3	50	75.7	
Smoking Status	Negative	3	11.1%	24	88.9%	0.445
	Positive	10	19.6	41	80.4	

Table No. 5: ECG and echocardiographic findings associated with renal angiography results

Table 110. 5. ECO and cenocardiographic initiality associated with renar angiography results						
Variable		Coronary angiography				
		Abnormal		Normal		P value
		No.	%	No.	%	
Echocardiography finding	Normal	2	10.5	17	89.5	0.327
	HHD	2	9.5	19	90.5	
	IHD	5	27.8	13	72.2	
	Severe MR	-	-	2	100.0	
EF	Mean±SD	55.78±7.645		59.94±7.596		0.135

DISCUSSION

The incidence of renal artery stenosis (RAS) observed in hypertensive patients in the present study during coronary angiography is consistent with the available research on the world, which demonstrates a close relationship between hypertension, coronary artery disease (CAD), and renal artery stenosis. Renal artery stenosis was present in 22.5% of hypertensive patients who underwent coronary angiography²², and 13% of hypertensive patients²³ had RAS, which was intensified by hypertension, multivessel CAD, and being a female. Mirbolouk et al²⁴ also emphasized RAS as a factor in the deterioration of the renal function and resistant hypertension in line with the existing evidence that underlines the necessity of RAS screening in hypertensive CAD patients. Kirishcheva et al²⁵ demonstrated endovascular that renal artery reconstruction enhanced blood pressure and cardiac values, which favor early intervention. Hypertension and low eGFR were also found to be strong predictors to RAS by Dong et al.26

The hypertensive patients in this study had mean age of 61.18±6.8 years, mean systolic blood pressure (SBP) of 154.3 mmHg and diastolic blood pressure (DBP) of 90.9 mmHg which showed that they had poor blood pressure control. Approximately 70 percent were uncontrolled hypertension, which is consistent with Ullah et al²⁷ who reported hypertension as one of the significant predictors of RAS. Sixty percent of the patients were diabetic (mean 11.53 years), and only 18.3% were well-regulated glycemically. According to Tofaha et al²⁸, cardiovascular risk is one of the major precipitants of uncontrolled diabetes.

The high CAD burden was seen in 35% of patients who had ischemic heart disease (IHD). All of them lacked chronic kidney disease (CKD), indicating that their renal function was intact despite being at high risk of cardiovascular disease, just like Kayed et al²³, who observed that multivessel CAD is associated with RAS despite the absence of an overt CKD. Lipid management was not at its best with 65% of the patients having dyslipidemia with only 25% on statins. Mirbolouk et al²⁴ emphasized the need to follow lipid-lowering therapy. There was also smoking (55%) and sedentary lifestyle (33) which were also considered risk factors to CAD and RAS. Omidi et al²⁹ proved that the sedentary behavior, smoking, and progression of CAD have a strong connection. Also, 65% had a family history of early CAD, which aligns with the report of Kayed et al²³, who suggested the family history as a significant CAD predeterminant.

Coronary angiography and RAS Correlation: 15% of the patients exhibited abnormal renal angiography, which proves the impressive RAS prevalence. Only 2.9% of hypertensive patients whose coronary angiography was normal exhibited RAS and 32% of hypertensive patients with abnormal coronary angiography exhibited RAS, and this indicates that there is strong correlation between coronary and renal artery disease. These results go hand in hand with Khalaf et al³, who discovered that age, hypertension, diabetes, and renal impairment were important predictors of RAS.

The statistical significance of the correlation between abnormal renal and coronary angiography outcomes was statistically significant (P = 0.002), which confirms that atherosclerosis is a systemic disease that involves more than one vascular bed as Payami et al,³⁰. Nevertheless, there were no significant differences regarding lesion location (ostial or proximal) and coronary outcomes (P = 0.134), which proves Soliman et al²² and Mirbolouk et al²⁴ showed no correlation between RAS and CAD severity.

Control of hypertension helps in the prevention of RAS; diabetes, dyslipidemia, smoking, and echocardiographic data did not play a significant role.³¹

CONCLUSION

The renal artery stenosis is common in hypertensive patients undergoing coronary angiography, strongly correlates with coronary artery disease, influenced by hypertension control, while diabetes, dyslipidemia, smoking, and echocardiography show no significant association.

Author's Contribution:

Concept & Design or	Murtada Ali Jassim,		
acquisition of analysis or	Ghazi Farhan Haji,		
interpretation of data:	Qassim Mudalal Ubaid		
Drafting or Revising	Nagham Kareem,		
Critically:	Mazin Basil Mizher		
	Alkarkhi		
Final Approval of version:	All the above authors		
Agreement to accountable	All the above authors		
for all aspects of work:			

Conflict of Interest: The study has no conflict of interest to declare by any author.

Source of Funding: None

Ethical Approval: No.4545/QM/Approval/4JKJD8 Dated 09.01.2023.

REFERENCES

- 1. Safian RD. Renal artery stenosis. Progress Cardiovasc Dis 2021;65:60-70.
- Brunström M, Burnier M, Grassi G, Januszewicz A, Muiesan ML, Tsioufis K, et al. ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension Endorsed by the European Renal Association (ERA) and the International Society of Hypertension (ISH). J Hypertens 2023; 41:1874-2071.
- 3. Khalaf KS, Haji GF, Mahmood GM, Al-Quraishi M. Prevalence, risk factors and association of renal artery stenosis with coronary artery disease in patients undergoing coronary angiography in Ibn-AlBitar center for cardiac surgery. J Faculty Med Baghdad 20171;59(2):112-6.
- 4. WHO. Hypertension. Geneva: Health Organization, 2025;14-9.

- Dobrek L. An outline of renal artery stenosis pathophysiology - a narrative review. Life 2021; 11(3):208.
- 6. Manaktala R, Tafur-Soto JD, White CJ. Renal artery stenosis in the patient with hypertension: prevalence, impact and management. Integrated Blood Pressure Control 2020:71-82.
- Textor S, Mailloux LU, Bakris GL, Kaplan NM, Forman JP. Clinical manifestations and diagnosis of chronic kidney disease resulting from atherosclerotic renal artery stenosis. Lit Rev Curr 2020; 1-11.
- 8. Deferrari G, Cipriani A, La Porta E. Renal dysfunction in cardiovascular diseases and its consequences. J Nephrol 2021;34(1):137-53.
- 9. Pappaccogli M, Robberechts T, Lengelé JP, Van der Niepen P, Sarafidis P, Rabbia F, et al. Endovascular versus medical management of atherosclerotic renovascular disease: update and emerging concepts. Hypertension 2023;80(6):1150-61.
- Lauder L, Mahfoud F, Azizi M, Bhatt DL, Ewen S, Kario K, et al. Hypertension management in patients with cardiovascular comorbidities. Eur Heart J 2023;44(23):2066-77.
- 11. Colbert GB, Abra G, Lerma EV. Update and review of renal artery stenosis. Disease Month 2021; 67(6):101118.
- 12. Schiffman MH, Lamparello NA, Logiurato B. Renal artery stenosis. Interven Urol 2021;421-39.
- Rischmueller M, Downie-Doyle S, Fitridge R. Pathophysiology and principles of management of vasculitis and fibromuscular dysplasia. mechanisms of vascular disease: A textbook for vascular specialists, 2020:361-93.
- Davis R, Hurie J. Color duplex scanning of the renal arteries. In: Noninvasive Vascular Diagnosis: A Practical Textbook for Clinicians 2022;24: 961-1001.
- Ahmed Z, Nabir S, Ahmed MN, AlHilli S, Ravikumar V, Momin UZ. Renal artery injury secondary to blunt abdominal trauma - two case reports. Pol J Radiol 2016;81:572-7.
- Contegiacomo A, Amodeo EM, Cina A, Di Stasi C, Iezzi R, et al. Renal artery embolization for iatrogenic renal vascular injuries management: 5 years' experience. Br J Radiol 2020; 93(1106): 20190256.
- 17. Yang EH, Marmagkiolis K, Balanescu DV, Hakeem A, Donisan T, Finch W, et al. Radiation-induced vascular disease a state-of-the-art review. Frontiers Cardiovasc Med 2021;8:652761.
- Aboyans V, Desormais I, Magne J, Morange G, Mohty D, Lacroix P. Renal artery stenosis in patients with peripheral artery disease: prevalence, risk factors and long-term prognosis. Eur J Vasc Endovasc Surg 2017;53(3):380-5.
- 19. Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, et al. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduction Targeted Therapy 2023;8(1):152.
- 20. Wang D, Pan Y, Cai X, Jing J, Yan H, Wang S, et

- al. Prevalence and associated factors of atherosclerotic plaque and stenosisin renal arteries: a community-based study. Angiol 2024: 7:
- 21. Di Monaco S, Lengelé JP, Heenaye S, Danse E, Hammer F, Lopez- Sublet M, et al. Prevalence and characteristics of renal artery fibromuscular dysplasia in hypertensive women below 50 years old. Eur J Clin Invest 2019;49(10):e13166.
- 22. Soliman M, Seleem M, Shalaby A, Abd-Allah A. Prevalence and predictors of renal artery stenosis in hypertensive patients undergoing coronary angiography. Menoufia Med J 2018;31(3):875.
- 23. Kayed MO, Hassan HM, Abd ElGhany ME, Abd Elkader AM. The incidence and predictors of renal artery stenosis in patients referred for coronary angiography. Egypt J Hosp Med 2019; 74(4): 797-801.
- 24. Mirbolouk F, Salari A, Ashouri A, Mahdavi-Roshan M, Gholipour M. Frequency of renal artery stenosis and associated factors in patients undergoing coronary angiography. J Nephropathol 2019;8(2):e14.
- 25. Kirishcheva E, Shutov A, Movchan E, Matveeva L. Cardiohemodynamic and prognostic significance of renal artery stenting in patients with coronary artery disease. Ulyanovsk Med Biol J 2022;2:6-14.
- 26. Dong H, Nie Z, Huang W, Liu Y, Li G, Ou Y, et al. A concise predictive nomogram for renal artery stenosis in selective patients undergoing coronary angiography. J Am Soc Hypertens 2018; 12(10):732-41.
- 27. Ullah A, Hossain M, Rahman M, Ali M, Hasan M. Association of coronary artery disease with hypertension, diabetes and chronic kidney disease. Global Acad J Med Sci 2023; 5(5): 264-70.
- 28. Tofaha HM, Abd Salam MS, EL Tayeb A. Prevalence and pattern of coronary artery disease in diabetic patients with cardiomyopathy. Egypt J Hosp Med 2021;83(1):1183-8.
- 29. Omidi N, Sadeghian S, Salarifar M, Jalali A, Abbasi SH, Yavari N, et al. Relationship between the severity of coronary artery disease and cardiovascular risk factors in acute coronary syndrome: based on Tehran Heart Center's Data Registry. J Tehran Univ Heart Center 2020; 15(4):165.
- 30. Payami B, Jafarizade M, Mousavi SS, Sattari SA, Nokhostin F. Prevalence and predictors of atherosclerotic renal artery stenosis in hypertensive patients undergoing simultaneous coronary and renal artery angiography; a cross-sectional study. J Renal Injury Prevent 2016; 5(1):34.
- 31. Mohamed K, FathyA, Salem M, et al. Incidence and predictors of renal artery stenosis in hypertensive patients undergoing coronary angiography. Int J Cardiovasc Imaging 2019; 35(7):1287-95