

Compare the Laparoscopic versus Open Appendectomy in Al-Diwaniyah Teaching Hospital

Laparoscopic
versus Open
Appendectomy

Ali Abdul Hussein Handooz¹, Ali Fawzi Abdalsahib² and Doaa Faris Jabaz¹

ABSTRACT

Objective: To compare the outcomes of laparoscopic appendectomy (LA) and open appendectomy (OA) in patients with acute appendicitis at Al-Diwaniyah Teaching Hospital.

Study Design: Prospective study

Place and Duration of Study: This study was conducted at the AL-Diwaniyah Teaching Hospital, Al-Diwaniyah City Iraq from 1st May 2021 to 30th April 2022.

Methods: One hundred patients with a clinical diagnosis of appendicitis were chosen. They were divided in two groups; group A treated with laparoscopic appendectomy and group B managed with open appendectomy.

Results: The average operative time was 45min in group A between 30 to 60 minutes while in group B, the average was 25min. Regarding the complications postoperatively, were mainly observed in group B as compared to group A. Paralytic ileus was 2 (4%) in group A.

Conclusion: Laparoscopic appendectomy is regarded as a safe and effective technique with lower postoperative pain, less hospital stay then less cost, quicker recovery and best looking scar than in classical Open appendectomy.

Key Words: Laparoscopic appendectomy, Open appendectomy, Appendicitis

Citation of article: Handooz AAH, Abdalsahib AF, Jabaz DF. Compare the Laparoscopic versus Open Appendectomy in Al-Diwaniyah Teaching Hospital. Med Forum 2025;36(1):28-32. doi:10.60110/medforum.360106.

INTRODUCTION

Acute appendicitis (AA) is mainly diagnosed clinically. The first appendectomy in the history was done in New York in 1886, and since that time, appendectomy was regarded as the commonest emergency surgery. Early and proper appendectomy has considered as the gold standard treatment for AA because of the highly risk of development of serious complications.¹

Appendicitis is regarded as the main emergency case in surgery that accounts about of 7-10% and is regarded as the major occurrence in child and adolescent ages, with age range from 10 to 30 years, and majority of patient need surgical intervention with appendicectomy to prevent possibility of perforation of the appendix.² The classical 1 surgical incision in open appendicectomy OA includes a minor wound (about 4-6 cm) in the lower right segment of the abdominal wall, called a grid iron incision.

¹. Department of Surgery / Internal Medicine², College of Medicine, University of Al-Qadisiya, Iraq.

Correspondence: Dr. Ali Abdul Hussein Handooz, Assistant Professor, Department of Surgery, College of Medicine, Al-Qadisiya University, Iraq.
Contact No: +964 780 856 7075
Email: ali.handooz@edu.qu.iq

Received: January, 2024
Reviewed: February-March, 2024
Accepted: November, 2024

Other approaches may include laparoscopic method (laparoscopic appendicectomy), which perform in most cases with 3 minute incisions (each about 1.5 cm). Then surgeon inserts probes for a camera and specialized laparoscopic tools within the abdominal cavity after inflation with CO₂ gas and excised the appendix as in the open traditional surgery.³

Open surgical appendectomy is a smooth and mostly used procedure for cases of acute appendicitis in the last years, but from about 15 years ago, laparoscopic appendectomy is becoming more popular, in spite of it is not as famous as laparoscopic cholecystectomy.⁴ The first laparoscopic appendicectomy was performed by a German gynecologist surgeon Semma in 1983. Laparscopy in cases of suspected appendicitis are regarded as a safe and effective procedure.^{1,4}

Using the laparoscopy gives a great assessment and large operative field of the peritoneum space more than that in the classic grid-iron incision. The technique gives a good vision that resulted in full assessment of the para-colic areas and the pelvic organs that is not easy to be performed with the OA.⁵

Inspite that traditional appendectomy has low risk of complications with low risk of complications and death, the laparoscopy has less invasive approach with best benefits in the postoperative period like small wound size and low risk of infection, less postoperative pain, and less postoperative recovery time result in less hospital cost, with other additional benefit mainly for females cases as it enhances the diagnosis assessment

and lowering the after operation pelvic adhesion that may end with infertility problems in addition to better aesthetic results.⁶ It has been done to make comparison of OA with LA, but the benefit of laparoscopy in appendectomy is under discussion till now.

Till now it has not been regarded as the most popular procedure for dealing with acute appendicitis as gall stone surgery. Debate still exists about the beneficial effect of laparoscopic appendectomy as compared to a conventional open procedure. The majority of patients with appendicitis are treated by the open approach in the UK.⁷

Laparoscopic appendectomy is a delicate and safe procedure with low risk of complications; it is also a great training procedure in laparoscopic field and, with best experience, takes a shorter time than in open procedure. In cases of negative appendectomies which are most frequent in fertile age women and can be accompanied with significant morbidity; therefore, laparoscopy has a diagnostic role here and, when the appendicitis is the cause, then appendix can be removed safely by laparoscopy.⁸

We applied this prospective study to make a comparison between the final results of open appendectomy and laparoscopic appendectomy regarding the pain in the postoperative period, recovery and the need of analgesics, incidence of infection of the wound and hospital admission time, reflecting including early resume the normal work.⁹

METHODS

In this review was done in AL-Diwaniyah teaching hospital in Al-Diwaniyah city, from May 2021 to May 2022. One hundred Patients with a clinical diagnosis of appendicitis were chosen (60 male and 40 female) thereafter distributed as a group A (50 patients treated with laparoscopic LA and group B (50 patients managed with open appendectomy OA). Exclusion criteria that applied in this study were including patients less than 10 years, patients with features of acute peritonitis, cases with a suspected right iliac fossa mass that may be diagnosed as appendicular mass or abscess, and cases of laparoscopy that converted to open appendectomy.

All patients had detailed information regarding the study and the risk of conversion to open surgery in the group of laparoscopic procedure. The ages of patients in the study were range between 15–45 years old. Cases with suspicion presented with right lower abdominal pain or with pain around umbilicus that migrate to right iliac fossa within 24 hours. Pain and nausea with or without anorexia, vomiting and elevated temperature in some cases were explained. On abdominal examination tenderness in the right lower abdomen with rebound tenderness and in some cases a cough impulse and Rovsing's sign, mild increase in temperature lower than 38 C. Regarding laboratory tests, leukocytosis in most

cases more than 10^4 cells/ml, and general urine examination and chest x-ray were performed in all cases. Regarding ultrasound study of the abdomen mainly needed in females in order to exclude other diagnosis that give a picture similar to acute appendicitis. Prophylactic antibiotic were given to all patients by using ceftriaxone (1000 mg twice daily) and metronidazole vial. Cases of OA were done by a classical McBurney's approach.

In LA cases, using the typical technique by three ports which includes two 10 mm ports (umbilical and right lower abdomen) and one 5 mm (left iliac fossa) ports were used. Post insufflation of peritoneum with CO₂, the intra-abdominal space was examined to allocate the appendix and exclude other differential pathology. Divide the mesoappendix by using ligature or bipolar cautery and appendix excised using endoclip and then appendix extruded with a laparoscopic bag. Close the wounds of port sites. Excised appendices were sent for histopathology.

Follow up postoperatively with checking bowel sounds at 6 hours interval, when positive, can allow a fluid diet to patient and then allowing patients going home. Time of operation from starting of anesthesia until discharge from the hospital started. Postoperative analgesia includes the numbers of intravenous or intramuscular injections needed. The complications in the postoperative period which may be including respiratory, gastrointestinal, and vascular. In our study, all those criteria were calculated between Laparoscopic appendectomy and open appendectomy. The data was entered and analyzed through SPSS-25.

RESULTS

Average age in both groups was 15–45 years and 30 years is the mean age in both groups. Men to women ratio were not the same in both groups, in group A was (1.3:1) and (1.2:1) was in group B. There were minor differences in age, sex in both groups which is not significant. Main clinical features are shifting lower right abdominal pain and rebound tenderness; other characteristics include nausea, anorexia and mild fever, there were no significant differences in the two groups (Table 1). The average operative time was 45 min in group A between 30 to 60 minutes while in group B, the average was 25 minutes between 20 to 30 minutes. It is clear that operative time was less in group B, the p value was $P < 0.001$ (Table 2).

The use of postoperative analgesia was assessed by calculation the number of analgesic injections used postoperatively at time of the hospital staying before discharge. More need for analgesia in group B than in group A, $p < 0.001$ which is significant (Table 3).

Return of normal bowel activity was explained by the spontaneous passage of flatus and detection of bowel sounds; in cases of LA the range was 10 hours while in

OA group the range was 18 hours, the $p<0.001$, which is significant (Table 4).

About the initiation of oral fluids diet, it was about 14 hours in cases of group A LA while it was about and 22 hours after OA in group B. Regarding the duration of admission postoperatively, in group A the mean hospital staying was 24 hours, while in group B it was 2 days, $p<0.001$ which is significant (Table 5).

Regarding postoperative complications, mainly observed in group B as compared to group A. Regarding paralytic ileus was 2 (4%) in group A, and 5 (10%) in group B. While the wound infection was 15 (16%) in group B and 3 (6%) in group A. The chest infection was (zero) in group A and 1 (2%) in group B. Deep venous thrombosis (DVT) was (zero) in both groups. using intra-abdominal drain was in 3 cases in group A (6%) while in group B, in 17 cases (34%). Mortality rate was zero in both groups which is of significant value $p<0.001$ (Table 6).

Table No. 1: Clinical features of acute appendicitis

Clinical feature	Group A		Group B	
	No.	%	No.	%
Shifting pain	35	70.0	33	66.0
Rebound tenderness	45	90.0	47	94.0
Anorexia	25	50.0	27	54.0
Nausea	15	30.0	13	26.0
Vomiting	10	20.0	11	22.0
Fever	5	10.0	6	12.0

Table No. 2: Comparison of duration of the operation

Time (minutes)	Group A		Group B	
	No.	%	No.	%
25	-	-	18	36.0
30	-	-	19	38.0
35	1	2.0	10	20.0
40	1	2.0	2	4.0
45	20	40.0	1	2.0
50	15	30.0	-	-
55	9	18.0	-	-
60	4	8.0	-	-

Table No. 3: Need for postoperative analgesic injection

No. of analgesic injection	Group A		Group B	
	No.	%	No.	%
1	30	60.0	50	100.0
2	5	10.0	30	60.0
3	1	2.0	25	50.0
4	-	-	10	20.0
>4	-	-	4	8.0

Table No. 4: Return of normal bowel movement

Bowel sounds (hour)	Group A		Group B	
	No.	%	No.	%
8	2	4.0	-	-

10	15	30.0	7	14.0
12	24	48.0	8	16.0
14	8	16.0	20	40.0
16	1	2.0	10	20.0
18	-	-	3	6.0
20	-	-	2	4.0

Table No. 5: Duration of postoperative hospital staying

Duration of hospital stay (hours)	Group A		Group B	
	No.	%	No.	%
8	2	4.0	-	-
12	2	4.0	1	2.0
24	40	80.0	10	20.0
48	6	12.0	35	70.0
72	-	-	4	8.0

Table No. 6: Postoperative complications rate

Complication	Group A		Group B	
	No.	%	No.	%
Paralytic ileus	2	4.0	5	10.0
Wound infection	3	6.0	15	30.0
Chest infection	-	-	1	2.0
DVT	-	-	-	-
Drain using	3	6.0	17	34.0
Mortality	-	-	-	-

DISCUSSION

Laparoscopic appendectomy has a progressive way to be a gold standard and approving its superiority over the open appendectomy (OA) and in spite of OA is the first choice to deal with acute appendicitis and is hence the most common urgent surgical operation performed, but with progression of minimally invasive techniques, LA had more attention worldwide. The first LA was reported in 1983 and from that time was considered accurate with high safety and low reported of complication rates around 1.2%.

Laparoscopic appendectomy gives a well exploration of the peritoneal cavity and can be examine totally more than as in the classical open appendectomy. This procedure permits a thorough and rapid inspection of total peritoneum, the paracolic regions and pelvic cavity which is difficult to be performed with open grid iron incision.¹⁰

Many researchers regard emergency laparoscopy is a great option for the management of acute abdomen cases that may be of benefit in lowering the costs and risk of complications and improving end results and more comfortable for patients.¹¹

The diagnostic accuracy in laparoscopic appendectomy is very good in patients with suspected appendicitis therefore it is highly recommended procedure. There are multiple studies that showing that laparoscopy regards a great diagnostic stool that reduces the unnecessary appendectomies in fertile age female.¹²

A multiplenumbers of studies have been carried out in India that makes a comparison between open and lap. appendicectomy. In the majority of the reviews, the result was that LA preferable than OA. According to a manyreviews applied in Nawaz Sharif Hospital, Lahore in 2011, which showed that the time of operation was lower in LA. This not as that in review where the operative time is more in LA as in our study we calculated the time of surgery from the time of insufflation of peritoneal cavity until the time of deflation. In this study, the mean operationduration was forty five minutes. In LA, while in OA is 25 min. which was determined by the surgeon experience and the efficacy of the assistant team.^{10,13}

In our study the more operative duration in laparoscopic appendicectomy may be resulted from extra needs as preparing the laparoscopic tools, gas inflation, ports insertion and a period for diagnostic laparoscopy.¹⁴ In other study that was done in 2002, Multan. it was also showed that LA, in spite of it is a new and expensive more costly procedure, was a great substitute for the OA as it had an additional feature that facilitate full visualization of abdominal cavity in young female patient when there suspicion about the diagnosis between other gynecological causes.

A study done by Al-Aubaidi¹² in Iraq at 2011 showed that the averageduration of operation in OA was nearly 25 min less than in LA group. With the mean analgesic used postoperatively in laparoscopic patients were 1.3; and regarding the complications after the procedure were few and detected more in OA patients. Staying of hospital was 24 hours in laparoscopic group. In other study performed by Pokala et al¹⁵ revealed that LA consumed a more time, about (95.1±44.1 minutes) than OA which about (65.8±32.5 minutes).

About the need for analgesia in our study was less in group A about 1.5 doses and is near to the result in the study conducted by Kamalet al¹⁰ was 1.4 doses.

In our series the risk of infection is similar in an other study, which showed that the risk of wound infections in cases of the laparoscopy group was 8.4% compare to that in the OA group which was 24.5%. Gupta and Cliff¹⁶ also reported that the risk of wound infections was much lesser in LA (15.4%) than in cases of OA (31%). Which may be explained by noting that in laparoscopic appendectomy there is little touching of the bowel and other organ directly by the surgeon hands and instruments as comparison in OA. Also, the gut is rarely come into touch with the wound of the abdominal wall at the time of LA where the appendix is dealt with internally.

In our study the approximate hospital stay in group A was 1 day and 2 days in group B and this result is a slight more than that mentioned in a study by Kamal et al¹⁰ and Yau et al¹⁴ but is near to the result showed in an other study. Pokala et al¹⁵ had also reported more

hospital stay than our series and reported a clear difference regarding the hospital admission between groups of LA which was (4.34±4.84 days and, 7.31±9.35 days in the OA group).

The return of normal bowel movement and starting of fluid diets with return of normal activity following appendectomy is better in cases of LA than in OA in our study. And this also the findings in multiple other series .the minimally invasive procedures including (LA) by definition it must allow for a more quick recovery, less admission time, and quicker recovery time.¹⁷⁻²⁰

CONCLUSION

Laparoscopic appendicectomy is regarded as a safe and effective technique with lower postoperative pain, less hospital stay then less cost, quicker recovery and best looking scar than in classical OA. Also there was less need for postoperative analgesic treatment, so it is characterized early mobility of patient and less risk of complications with early return to normal life.

Author's Contribution:

Concept & Design or acquisition of analysis or interpretation of data:	Ali Abdul Hussein Handooz
Drafting or Revising Critically:	Ali Fawzi Abdalsahib, Doaa Faris Jabaz
Final Approval of version:	All the above authors
Agreement to accountable for all aspects of work:	All the above authors

Conflict of Interest: The study has no conflict of interest to declare by any author.

Source of Funding: None

Ethical Approval: No. 987/QM/Approval/006 Dated 09.01.2021

REFERENCES

- Anderson JE, Bickler SW, Chang DC, Talamini MA. Examining a common disease with unknown etiology: trends in epidemiology and surgical management of appendicitis in California, 1995-2009. *World J Surg* 2012;36:2787-94.
- Perez KS, Allen SR. Complicated appendicitis and considerations for interval appendectomy. *JAAPA* 2018;31(9):35-41.
- Maxfield MW, Schuster KM, Bokhari J, McGillicuddy EA, Davis KA. Predictive factors for failure of non-operative management in perforated appendicitis. *J Trauma Acute Care Surg* 2014;76(4):976-81.
- Sallinen V, Akl EA, You JJ, et al. Meta-analysis of antibiotics versus appendicectomy for non-perforated acute appendicitis. *Br J Surg* 2016;103:656-67.

5. Samdani T, Fancher TT, Pieracci FM, Eachempati S, Rashidi L, Nash GM. Is interval appendectomy indicated after non-operative management of acute appendicitis in patients with cancer? A retrospective review from a single institution. *Am Surg* 2015; 81(5):532-6.
6. Sicard N, Tousignant P, Pineault R, Dubé S. Non-patient factors related to rates of ruptured appendicitis. *Br J Surg* 2007;94:214-21.
7. Langelotz C, Scharfenberg M, Haase O, Schwenk W. Stress and heart rate variability in surgeons during a 24-hour shift. *Arch Surg* 2008;143:751-5.
8. Kelz RR, Freeman KM, Hosokawa PW, Asch DA, Spitz FR, Moskowitz M, et al. Time of day is associated with postoperative morbidity: an analysis of the national surgical quality improvement program data. *Ann Surg* 2008;247:544-52.
9. Zare MM, Itani KM, Schiffner TL, Henderson WG, Khuri SF. Mortality after nonemergent major surgery performed on Friday versus Monday through Wednesday. *Ann Surg* 2007;246:866-74.
10. Kamal M, Qureshi KH. Laparoscopic versus open appendectomy. *Pak J Med Res* 2003;42:23-6.
11. Sauerland S, Jaschinski T, Neugebauer EA. Laparoscopic versus open surgery for suspected appendicitis. *Cochrane Database Syst Rev* 2010;10:CD001546.
12. Al-Aubaidi T. Laparoscopic versus open appendectomy in patients with acute appendicitis. *AL-Kindy Col Med J* 2011;7(2): 78-84.
13. Young JL, Law WL, Lo CY, Lam CMA. Comparative study of routine laparoscopic versus open appendectomy. *JSLS* 2006;10:188-92.
14. Yau KK, Siu WT, Tanq CN, Yanq GP, Li MK. Laparoscopic versus open appendectomy for complicated appendicitis. *J Am Coll Surg* 2007;205:60-5.
15. Pokala N, Sadhasivam S, Kiran RP, Parithivel V. Complicated appendicitis-is the laparoscopic approach appropriate? A comparative study with open approach; outcome in a community hospital setting. *Am Surg* 2007;37:737-41.
16. Gupta R, Cliff S. Infectious complications following laparoscopic appendectomy. *Can J Surg* 2006;49:6.
17. Schlottmann F, Sadava EE, Pena ME, Rotholtz NA. Laparoscopic appendectomy: risk factors for postoperative intraabdominal abscess. *World J Surg* 2017;41(5):1254-1258.
18. Athanasiou C, Lockwood S, Markides GA. Systematic review and meta-analysis of laparoscopic versus open appendectomy in adults with complicated appendicitis: an update of the literature. *World J Surg* 2017;41(12):3083-99.
19. Tan WJH, Pek W, Kabir T, Chan WH, Wong WK, Ong HS. Clinical outcome and cost comparison between laparoscopic and open appendectomy. *Ann Acad Med Singapore* 2014;43:464-8.
20. Pogorelic Z, Rak S, Mrklic I, Juric I. Prospective validation of Alvarado score and Pediatric appendicitis score for the diagnosis of acute appendicitis in children. *Pediatr Emerg Care* 2015; 31:164-8.