Original Article

## Pattern of Stroke in Young Adults:

Pattern of Stroke in Young Adults

# Clinical Presentation and Risk Factors Saeed Arif, Husnain Hashim, Saima Shafait and Kainat Amjad

### **ABSTRACT**

**Objective:** The main objective of the study is to find the pattern of stroke in young adults' clinical presentations, risk factors, and implications for early detection and management.

Study Design: Retrospective analysis

**Place and Duration of Study:** This study was conducted at the Neurology Department Fauji Foundation Hospital Rawalpindi from January 2020 to December 2023.

**Methods:** Data was collected from 220 stroke patients from different age groups. Medical records of eligible patients were systematically reviewed to extract pertinent information regarding demographics, clinical presentation, medical history, risk factors, diagnostic workup, treatment modalities, and outcomes.

**Results:** Data were collected from 220 stroke patients, 120 (54.5%) met the inclusion criteria for the study, with a majority being male (70%, n=84) and the remaining 30% female (n=36). The mean age of the patients was  $36.4 \pm 6.2$  years. Ischemic stroke was the most common subtype, affecting 70 patients (58.3%), followed by hemorrhagic stroke in 40 patients (33.3%), and cryptogenic stroke in 10 patients (8.3%).

**Conclusion:** It is concluded that stroke poses a significant burden on young adults, with varying clinical presentations and risk factor profiles. Early recognition and comprehensive risk assessment are crucial for timely intervention and improved outcomes in this population.

Key Words: Risk factors, Stroke, Treatment, Young adults, Treatment

Citation of article: Arif S, Hashim H, Shafait S, Amjad K. Pattern of Stroke in Young Adults: Clinical Presentation and Risk Factors. Med Forum 2024;35(11):52-55. doi:10.60110/medforum.351110.

#### INTRODUCTION

Stroke, traditionally viewed as a disease of the elderly, is increasingly recognized as a significant health concern among young adults. The incidence of stroke in individuals under the age of 45 has been steadily rising, necessitating a deeper understanding of its clinical presentations, risk factors, and implications for early detection and management in this population<sup>1</sup>. While stroke in young adults represents a relatively small proportion of overall stroke cases, its impact can be disproportionately severe, leading to long-term disability, loss of productivity, and diminished quality of life<sup>2</sup>. Unlike in older adults, where stroke is often attributed to traditional risk factors such as hypertension and atherosclerosis, the etiology of stroke in young adults is more diverse and frequently involves non-traditional risk factors<sup>3</sup>.

Department of Neurology, Fauji Foundation Hospital Rawalpindi.

Correspondence: Dr. Hussnain Hashim, Consultant Neurologist and Head of Neurology department Fauji Foundation Hospital Rawalpindi

Contact No: 03359447766

Email: hashimneuro1976@gmail.com

Received: February, 2024 Reviewed: March-April, 2024 Accepted: September, 2024 Stroke remains a significant contributor to both mortality and morbidity globally, affecting individuals across all age groups from neonates to the elderly. However, as individuals age, the mechanisms, pathophysiology, etiologies, recovery, and prognosis of stroke vary<sup>4</sup>. Recent literature highlights a concerning trend: a rising rate of hospitalizations for strokes among young adults, typically defined as individuals aged 18 to 50 years old, while hospitalization rates for older patients have concurrently decreased<sup>5</sup>. This trend carries substantial implications for individuals, families, society, healthcare utilization, and macroeconomics. Ischemic strokes, in particular, contribute significantly to mortality and disability, with the latter imposing profound familial, societal, and economic burdens<sup>6</sup>. Young stroke patients, often in their prime productive years, experience sudden and unexpected disability, impacting work, family, earnings, and societal contributions. Despite representing only 10-15% of all strokes, the long-term and widespread ramifications of stroke in adults aged 18 to 50 years underscore the urgency of addressing this issue<sup>7</sup>.

The prevalence of stroke in young adults, defined as those under 50 years old, comprises approximately 10–14% of all strokes. Unlike in older adults, the global incidence of ischemic stroke among young adults is on the rise<sup>8</sup>. In the United States, for instance, the stroke incidence for adults aged 20–44 increased from 17 per 100,000 in 1993 to 28 per 100,000 in 2015. Similarly, a nationwide study in the Netherlands revealed a significant increase in stroke incidence among young

adults from 1998 to 2010, driven mainly by those over 35 years old and ischemic stroke cases. Notably, alarming trends have been observed in low- and middle-income countries as well<sup>9</sup>. Moreover, young women face a disproportionately higher risk of ischemic strokes compared to men. A recent meta-analysis highlighted a 44% higher incidence rate of ischemic strokes in women ≤35 years old compared to men, although this difference diminishes in the 35 to 45 age group. The lower prevalence of atherosclerotic disease in premenopausal women suggests that nonatherosclerotic and nontraditional risk factors may play a more significant role in ischemic stroke among young women<sup>10</sup>.

#### **METHODS**

This retrospective analysis was conducted in Neurology Department Fauji Foundation Hospital Rawalpindi from January 2020 to December 2023. Data was collected from 220 stroke patients from different age groups.

#### **Inclusion Criteria:**

- Patients aged 18 to 45 years.
- Diagnosis of stroke confirmed by neuroimaging (computed tomography or magnetic resonance imaging) and clinical evaluation.
- Availability of complete medical records containing relevant demographic, clinical, and laboratory data.

#### **Exclusion Criteria:**

- Patients with transient ischemic attacks (TIAs) or other non-stroke diagnoses.
- Incomplete medical records or missing essential data required for analysis.

**Data Collection:** Medical records of eligible patients were systematically reviewed to extract pertinent information regarding demographics, clinical presentation, medical history, risk factors, diagnostic workup, treatment modalities, and outcomes. Detailed information on stroke subtype classification (e.g., ischemic stroke, hemorrhagic stroke, cryptogenic stroke) was also recorded.

Assessment of Clinical Presentations and Risk Factors: Symptom onset characteristics, including timing, severity, and duration. Neurological deficits, such as motor weakness, sensory disturbances, speech impairments, and visual changes.

Presence of associated symptoms, including headache, seizures, and altered mental status. Traditional vascular risk factors: Hypertension, diabetes mellitus, dyslipidemia, smoking, and obesity. Non-traditional risk factors: Migraine, substance abuse (e.g., alcohol, illicit drugs), hypercoagulable states, autoimmune disorders, and genetic predispositions.

**Statistical Analysis:** Descriptive statistics (mean, standard deviation, frequency distributions) were used to summarize demographic and clinical characteristics

of the study population. Comparative analysis, including Chi-square test, t-test, or non-parametric equivalents, was performed to assess differences in clinical presentations and risk factor profiles among different stroke subtypes.

#### RESULTS

Data were collected from 220 stroke patients, 120 (54.5%) met the inclusion criteria for the study, with a majority being male (70%, n=84) and the remaining 30% female (n=36). The mean age of the patients was  $36.4 \pm 6.2$  years. Ischemic stroke was the most common subtype, affecting 70 patients (58.3%), followed by hemorrhagic stroke in 40 patients (33.3%), and cryptogenic stroke in 10 patients (8.3%).

Table No. 1: Demographic and Clinical Characteristics

| Characteristic     | Value                        |
|--------------------|------------------------------|
| Total Patients     | 220                          |
| Included Patients  | 120 (54.5%)                  |
| Male Patients      | 84 (70%)                     |
| Female Patients    | 36 (30%)                     |
| Mean Age           | $36.4 \pm 6.2 \text{ years}$ |
| Stroke Subtype     | Patients (%)                 |
| Ischemic Stroke    | 70 (58.3%)                   |
| Hemorrhagic Stroke | 40 (33.3%)                   |
| Cryptogenic Stroke | 10 (8.3%)                    |

The most prevalent clinical symptom among the patients was motor weakness, observed in 108 cases (90%), followed by speech impairment in 78 patients (65%). Headache was reported in 60 patients (50%), while seizures and altered mental status were less common, occurring in 24 (20%) and 18 (15%) patients, respectively.

**Table No. 2: Clinical Presentations** 

| Symptom               | Patients (%) |
|-----------------------|--------------|
| Motor Weakness        | 108 (90%)    |
| Speech Impairment     | 78 (65%)     |
| Headache              | 60 (50%)     |
| Seizures              | 24 (20%)     |
| Altered Mental Status | 18 (15%)     |

Table No. 3: Risk Factor Profile

| Risk Factor             | Patients (%) |
|-------------------------|--------------|
| Hypertension            | 60 (50%)     |
| Diabetes Mellitus       | 30 (25%)     |
| Dyslipidemia            | 36 (30%)     |
| Smoking                 | 48 (40%)     |
| Obesity                 | 24 (20%)     |
| Migraine                | 18 (15%)     |
| Substance Abuse         | 12 (10%)     |
| Hypercoagulable States  | 10 (8.3%)    |
| Autoimmune Disorders    | 6 (5%)       |
| Genetic Predispositions | 4 (3.3%)     |

Among the traditional risk factors, hypertension was the most common, affecting 60 patients (50%), followed by smoking (40%), dyslipidemia (30%), and diabetes mellitus (25%). Obesity was noted in 24 patients (20%). Non-traditional risk factors included migraines (15%), substance abuse (10%), hypercoagulable states (8.3%), autoimmune disorders (5%), and genetic predispositions (3.3%). Comparative analysis revealed significant differences in risk factors and symptoms

between ischemic and hemorrhagic strokes. Hypertension was significantly more prevalent in hemorrhagic stroke patients (80%) compared to ischemic stroke patients (40%) (p < 0.01). Conversely, smoking was more associated with ischemic stroke (50%) than hemorrhagic stroke (30%) (p < 0.05). Headache was notably higher in hemorrhagic stroke cases (70%) compared to ischemic strokes (20%) (p < 0.001).

Table No. 4: Comparative Analysis (Ischemic vs Hemorrhagic Stroke)

| Risk Factor/Symptom   | Ischemic Stroke | Hemorrhagic Stroke | Significance (p-value) |
|-----------------------|-----------------|--------------------|------------------------|
| Hypertension          | 40%             | 80%                | < 0.01                 |
| Smoking               | 50%             | 30%                | < 0.05                 |
| Headache              | 20%             | 70%                | < 0.001                |
| Neurological Deficits | 90%             | 90%                | N/A                    |

#### DISCUSSION

The findings of this study provide valuable insights into the clinical presentations, risk factor profiles, and implications for early detection and management of stroke in young adults. Several key observations emerge from the analysis, shedding light on the unique characteristics of stroke in this demographic group and informing strategies for prevention and intervention<sup>11</sup>. Firstly, our study highlights the significant burden of stroke among young adults, with the majority of cases occurring in individuals aged between 35 and 45 years. Contrary to the common perception of stroke as a disease of the elderly, our findings underscore the importance of vigilance and awareness among healthcare providers regarding stroke risk in younger populations<sup>12</sup>. Clinical presentations of stroke in young adults vary depending on the subtype, with ischemic stroke being the most common, followed by hemorrhagic and cryptogenic strokes. Ischemic strokes typically manifest with focal neurological deficits, while hemorrhagic strokes often present with suddenonset severe headache and altered level of consciousness<sup>13-15</sup>. The identification of cryptogenic strokes underscores the challenges associated with determining underlying etiology in this subgroup, necessitating thorough diagnostic evaluation and consideration of non-traditional risk factors<sup>16</sup>. The risk factor profile associated with stroke in young adults encompasses both traditional vascular risk factors and non-traditional factors. While hypertension remains the most prevalent risk factor across all stroke subtypes, our study highlights the differential distribution of other risk factors between ischemic and hemorrhagic strokes<sup>17</sup>. Notably, substance abuse and hypercoagulable states emerge as significant contributors to hemorrhagic stroke risk, underscoring the importance of comprehensive risk assessment and targeted prevention strategies tailored to individual patient profiles 18-20.

#### **CONCLUSION**

It is concluded that stroke poses a significant burden on young adults, with varying clinical presentations and risk factor profiles. Early recognition and comprehensive risk assessment are crucial for timely intervention and improved outcomes in this population.

#### **Author's Contribution:**

| Concept & Design or        | Saeed Arif, Hussnain  |  |
|----------------------------|-----------------------|--|
| acquisition of analysis or | Hashim                |  |
| interpretation of data:    |                       |  |
| Drafting or Revising       | Saima Shafait,        |  |
| Critically:                | Kainat Amjad          |  |
| Final Approval of version: | All the above authors |  |
| Agreement to accountable   | All the above authors |  |
| for all aspects of work:   |                       |  |

**Conflict of Interest:** The study has no conflict of interest to declare by any author.

Source of Funding: None

Ethical Approval: No.587/RC/FFH dated 15.12.2019

#### REFERENCES

- 1. George MG. Risk factors for ischemic stroke in younger adults: a focused update. Stroke 2020; 51(3):729-35.
- 2. Yahya T, Jilani MH, Khan SU, Mszar R, Hassan SZ, Blaha MJ, et al. Stroke in young adults: Current trends, opportunities for prevention and pathways forward. Am J Preventive Cardiol 2020; 3:100085.
- 3. Sarecka-Hujar B, Kopyta I. Risk factors for recurrent arterial ischemic stroke in children and young adults. Brain Sciences 2020;10(1):24.
- 4. Hirano Y, Miyawaki S, Imai H, Hongo H, Ohara K, Dofuku S, et al. Association between the onset pattern of adult moyamoya disease and risk factors for stroke. Stroke 2020;51(10):3124-8.
- 5. Boot E, Ekker MS, Putaala J, Kittner S, De Leeuw FE, Tuladhar AM. Ischaemic stroke in young

- adults: a global perspective. J Neurol Neurosurg Psychiatr 2020;91(4):411-7.
- 6. Matuja SS, Munseri P, Khanbhai K. The burden and outcomes of stroke in young adults at a tertiary hospital in Tanzania: a comparison with older adults. BMC Neurol 2020;20(1):1-0.
- 7. Skajaa N, Adelborg K, Horváth-Puhó E, Rothman KJ, Henderson VW, Casper Thygesen L, et al. Nationwide trends in incidence and mortality of stroke among younger and older adults in Denmark. Neurol 2021;96(13):e1711-23.
- 8. Vogrig A, Gigli GL, Bna C, Morassi M. Stroke in patients with COVID-19: Clinical and neuroimaging characteristics. Neurosci letters 2021;743:135564.
- 9. Potter TB, Tannous J, Vahidy FS. A Contemporary Review of Epidemiology, Risk Factors, Etiology, and Outcomes of Premature Stroke. Current Atherosclerosis Reports 2022;24(12):939-48.
- Hinduja A. Posterior reversible encephalopathy syndrome: clinical features and outcome. Frontiers Neurol 2020;11:71.
- 11. Vakhtangadze T, Singh Tak R, Singh U, Baig MS, Bezsonov E. Gender differences in atherosclerotic vascular disease: From lipids to clinical outcomes. Frontiers Cardiovascular Med 2021;8:707889.
- 12. Khan SU, Khan MZ, Khan MU, Khan MS, Mamas MA, Rashid M, et al. Clinical and economic burden of stroke among young, midlife, and older adults in the United States, 2002-2017. Mayo Clinic Proceedings: Innovations, Quality Outcomes 2021;5(2):431-41.
- 13. Shin M, Sohn MK, Lee J, Kim DY, Lee SG, Shin YI, et al. Effect of cognitive reserve on risk of cognitive impairment and recovery after stroke: the KOSCO study. Stroke 2020;51(1):99-107.

- 14. Nguyen NN, Hoang VT, Dao TL, Dudouet P, Eldin C, Gautret P. Clinical patterns of somatic symptoms in patients suffering from post-acute long COVID: a systematic review. Eur J Clin Microbiol Infect Dis 2022;41(4):515-45.
- Russell JB, Charles E, Conteh V, Lisk DR. Risk factors, clinical outcomes and predictors of stroke mortality in Sierra Leoneans: a retrospective hospital cohort study. Annals Med Surg 2020; 60:293-300.
- 16. Tetsuka S, Ogawa T, Hashimoto R, Kato H. Clinical features, pathogenesis, and management of stroke-like episodes due to MELAS. Metabolic Brain Dis 2021;36(8):2181-93.
- 17. Øie LR, Kurth T, Gulati S, Dodick DW. Migraine and risk of stroke. Journal of Neurology, Neurosurg Psychiatr 2020;91(6):593-604.
- 18. Lee H, Park JB, Hwang IC, Yoon YE, Park HE, Choi SY, et al. Association of four lipid components with mortality, myocardial infarction, and stroke in statin-naïve young adults: a nationwide cohort study. Eur J Preventive Cardiol 2020;27(8):870-81.
- 19. Monti S, Craven A, Klersy C, Montecucco C, Caporali R, Watts R, et al. Association between age at disease onset of anti-neutrophil cytoplasmic antibody—associated vasculitis and clinical presentation and short-term outcomes. Rheumatol 2021;60(2):617-28.
- 20. Mc Carthy CE, Yusuf S, Judge C, Alvarez-Iglesias A, Hankey GJ, Oveisgharan S, et al. Sleep patterns and the risk of acute stroke: results from the INTERSTROKE International Case-Control Study. Neurol 2023;100(21):e2191-203...