

Original Article

Antimicrobial Susceptibility Testing and Esbl Detection from the Bacteria in Haemodialysis Patients

1. Muhammad Arif Baloch 2. Shafqat Qamar 3. Inayat ur Rahman Abbasi

1. Dept of Microbiology, Basic Medical Sciences Institute, JPMC, Karachi 2. Asstt. Prof. of Pathology, Hamdard University Karachi 3. Asstt. Prof. of Biochemistry, Margala Institute of Health Sciences Rawalpindi

ABSTRACT

Objective of Study: To find out the antimicrobial sensitivity and extended spectrum β -lactamase producing organisms among clinical isolates recovered from patients on haemodialysis. Extended spectrum β -lactamase are enzymes produced from some strains of gram negative bacilli that mediate resistance to extended spectrum cephalosporin and aztreonam. They are most common in *E.coli* and *Klebsiella* species but are present in variety of enterobacteriaceae.

Design of Study: Experimental and observational study.

Place and duration of Study: This study was carried out in Microbiology Department of BMSI, JPMC, Karachi. This study was carried out from June 2005 to June 2006.

Materials and Methods: A total of 250 cases irrespective of age and gender were included in this study. A total of 15 gram positive cocci (7.5%) and 175 (87.5%) gram negative organisms were recovered. In this study 66.66% *E.coli* and 33.33% *Klebsiella* species were ESBL producing. Antimicrobial sensitivity pattern in this study show that most of the organisms were sensitive to 2nd and 3rd generation cephalosporins and fluroquinolones i.e. ciprofloxacin.

Results: Table 1 shows isolation of ESBL producing organisms from 200 positive cases. Out of these 175 cases were from Enterobacteriaceae, among these 06 (3.42%) cases have been found to be ESBL producing organisms.

Conclusion: The results of this study support the use of initial antimicrobial therapy to reduce the spread of infection and other complications. Currently ciprofloxacin is regarded as the drug of choice for the treatment of infection caused by both gram negative and gram positive bacteria in patients on hemodialysis

Key words: Extended spectrum β -lactamase (ESBL), antimicrobial sensitivity.

INTRODUCTION

Bacterial infections of all types seem to be increased in incidence, but there is a particular risk of infections related to vascular access sites or devices in patients on haemodialysis. Many of these infections are due to sepsis, primarily arising from the vascular access site. Septicemia alone accounts for almost 11% of mortality in hemodialysis patients. Hemodialysis patients are also a sentinel population for the emergence of antimicrobial resistance, especially with regards to gram positive cocci (vancomycin resistant enterococci (VRE), methicillin resistant *Staphylococcus aureus* (MRSA), *Staphylococcus aureus* with reduced susceptibility to vancomycin intermediate *Staphylococcus aureus* (VRSA), and methicillin resistant *Staphylococcus aureus* (MRSA)¹.

Antimicrobial use in concern with patient to patient transmission of resistant strain, has caused a rapid increase in prevalence of antimicrobial resistance in recent years. This particularly includes threat to dialysis patients who have often been at the fore front of epidemic of resistance².

Resistance to Beta lactam antimicrobial agents especially Extended spectrum cephalosporin and other

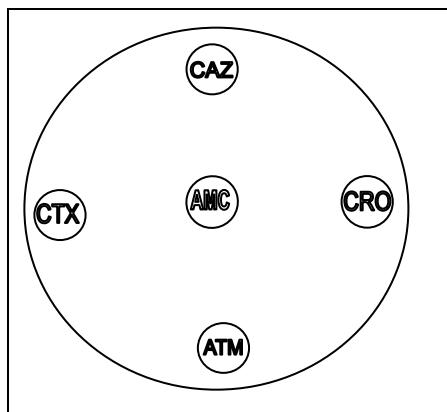
agents among clinical isolates of gram negative bacteria is on the rise worldwide. The antimicrobial resistant pathogens include Extended spectrum cephalosporin resistant *E.coli*, *Klebsiella pneumoniae*, *Enterobacter* *Coloacae*, *Serratia* and *Citrobacter freundii* and *Pseudononas aeruginosa* and *Acinitobacter baumannii*³. The emergence of extended spectrum β -lactamase (ESBL) producing Enterobacteriaceae, particularly *Escherichia coli* and *Klebsiella pneumoniae*, presents significant diagnostic and therapeutic challenges to the management of infections due to these organisms⁴.

MATERIALS AND METHODS

A total of 190 bacteria were recovered from intravenous catheter tips from patients admitted in different hospitals e.g. Nephrology unit of JPMC, Kidney centre and SIUT. The Samples received initially incubated on blood agar, MacConkey agar and Chocolate agar. The samples were incubated at 37°C for 24 hours. The organisms were primarily identified by standard techniques. The antimicrobial sensitivity test done by standard National Clinical Committee Laboratory Standard (NCCLS) method (Linscott and Brown 2005)⁵.

Extended spectrum beta-lactamase (ESBL) production was carried out by double disc diffusion method⁶. According to this method a susceptibility disc containing (Augmentin) Amoxicillin 10 µg+ Clavulanic acid 20 µg was placed in the center of plate containing Muller Hinton Agar. Amoxicillin 10 µg+ Clavulanic acid 20 µg (Augmentin) disc was placed as an inhibitor of beta-lactamase. Cefotaxime, Ceftazidime, Ceftriaxone and Aztreonam (30µg) each were placed at a distance of 30mm (center to center) from Amoxicillin 10 µg+ Clavulanic acid 20 µg (Augmentin).

Enhancement of inhibition zone towards Amoxil + clavulanic acid disc indicating synergy of Clavulanic acid with anyone of the test antibiotics was taken as presumptive evidence of ESBL production. The quality control strains used for DDT or DDST testing were *E. coli* ATCC 25922 and *Klebsiella pneumoniae* ATCC 700603⁷.


The following discs are applied on Muller Hinton Agar (MHA)

Disc	Concentrations	Oxoid disc code	Inhibition zone
Amoxil + clavulanic acid	20+10µg (C.A+Amp)		≥20
Ceftazidime	30µg	CAZ30	≤27
Cefotaxime	30µg	CTX30	≤27
Ceftriaxone	30µg	CRO30	≤25
Azactum	30µg	ATM30	≤27

Interpretation Results:

An organism was interpreted as containing an ESBL if there is an increase or extension of >5mm in the inhibition in the area between the Amoxicillin 10 µg+ Clavulanic acid 20 µg (Augmentin) disc and any one of the four cephalosporin discs in comparison with the zone of inhibition on the for side of that disc⁶.

Muller Hinton Agar Plate With Antimicrobial Disc

- Diagram showing double disc diffusion (synergy) test used to detect the (ESBLs) Extended Spectrum Beta-Lactamase producing organisms (Jarliar et al., 1988)⁴.

CAZ = Ceftazidime, CTX = Cefotaxime

AMC = Amoxicillin 10 µg+ Clavulanic acid 20 µg

CRO = Ceftriaxone, ATM = Aztreonam

RESULTS

Table 1 shows isolation of ESBL producing organisms from 200 positive cases. Out of these 175 cases were from Enterobacteriaceae, among these 06 (3.42%) cases have been found to be ESBL producing organisms.

DISCUSSION

A total of 250 subjects were selected and infection was positive in 200 (80%) cases where as 50 (20%) were negative. Same type of study has been done by Shaikh et al. (2005). Oncu et al. (2003) isolated only 3% fungus.

In present study antimicrobial sensitivity of isolated organisms has also been carried out. *E.coli* is highly sensitive with cephalaxin (80%), Ciprofloxacin (CIP) (86%), Ofloxacin (OFL) (88.9%), Amoxil + clavulanic acid (AMC) (77.9%), Cephazolin (CL) (84.5%), Cefuroxime (CXM) (64%) while highly resistant to Amoxicillin (AML) (72%), Neomycin (NEO) (79.50%), Gentamicin (GM) (66.7%) and ceftriaxone (CRO) (75.5%).

In this study the extended spectrum of beta lactamase (ESBL) producing organisms, showed resistance from 2nd and 3rd generation cephalosporin and carbapenem. ESBL production was mostly observed in *E.coli* 4 cases (66.66%) and *Klebsiella* species 2 cases (33.33%). Study done by Qadir (2005) also observed ESBL production in *E.coli*, *Klebsiella* and *Pseudomonas aeruginosa*.

CONCLUSION

The results of this study support the use of initial antimicrobial therapy to reduce the spread of infection and other complications. Currently ciprofloxacin is regarded as the drug of choice for the treatment of infection

caused by both gram negative and gram positive bacteria in patients on hemodialysis.

Table No. 1: Distribution of Esbl Producing Isolates

No. of specimens	No. of +ve organisms isolated	% of +ve isolates	No. of +ve organisms of Enterobacteriaceae family	No. of ESBL producing organisms	% of ESBL producing organisms
250	200	80%	175	06	3.42%

Table No. 2: Antimicrobial Sensitivity of Gram Negative Organisms Isolated From Hemodialysis Patients

Micro-organism Susceptibility	AML 10 μ g	AMC 30 μ g	CZ 30 μ g	CL 30 μ g	CXM 30 μ g	CRO 30 μ g	GM 10 μ g	NEO 30 μ g	CIP 5 μ g	OFL 10 μ g
<i>E.coli</i>										
Sensitive (%)	28.00	77.90	80.00	84.50	64.00	24.50	33.30	20.50	86.00	88.90
Resistant (%)	72.00	22.10	20.00	15.50	36.00	75.50	66.70	79.50	14.00	22.10
<i>Klebsiella</i>										
Sensitive (%)	29.50	74.50	75.00	70.50	63.50	66.00	35.00	22.20	88.50	73.50
Resistant (%)	70.50	25.50	25.00	29.50	36.50	34.00	65.00	77.80	11.50	26.50
<i>Pseudomonas</i>										
Sensitive (%)	12.00	35.50	64.50	65.50	62.00	69.00	18.00	22.50	78.50	79.00
Resistant (%)	88.00	64.50	35.50	34.50	38.50	31.00	82.00	77.50	21.50	21.00
<i>Proteus</i>										
Sensitive (%)	8.00	75.00	64.80	69.00	68.22	62.00	9.00	7.00	76.00	80.50
Resistant (%)	92.00	25.00	35.20	31.00	31.88	38.00	91.00	93.00	24.00	19.50

Key: Name with Abbreviation: Amoxicillin (AML), Amoxil + clavulanic acid (AMC), Cephalexin (CZ), Cephazolin (CL), Cefuroxime (CXM), Ceftriaxone (CRO), Gentamicin (GM), Neomycin (NEO), Ciprofloxacin (CIP), Ofloxacin (OFL)

REFERENCES

1. Arduino MJ, Tokars JI. Why is an infection control program needed in the hemodialysis setting? *Nephrol News Issues* 2005; 19(7):44,46-9.
2. Berns JS, Tokars JI. Preventing bacterial infections and antimicrobial resistance in dialysis patients. *Am J Kidney Dis* 2002; 40(5):886-898.
3. Ali AM, Rafi S, Qureshi AH. Frequency of extended spectrum beta lactamase producing gram negative bacilli among clinical isolates at clinical laboratories of Army Medical College, Rawalpindi. Microbiology Department, Army Medical College, Rawalpindi, Pakistan, 2000.
4. Wong-Beringer A. Therapeutic challenges associated with extended-spectrum, beta lactamase producing *Escherichia coli* and *Klebsiella pneumoniae*. *Pharmacotherapy* 2001; 21(5): 583-592.
5. Linscott A J, Brown William J. Evaluation of Four Commercially Available Extended-Spectrum Beta-lactamase Phenotypic Confirmation Tests. *JCM* 2005; 43(3):1081-85.
6. Jarliar V, Nicolas M, Fournier G, Philippon A. Extended spectrum β -lactamases conferring transferable resistance to newer-lactam agents in Enterobacteriaceae, hospital prevalence and susceptibility pattern. *Rev Infect Dis* 1988; 10: 867-878.
7. Shukla I, Tiwari R, garwal M. Prevalence of extended spectrum-lactamase producing klebsiella pneumoniae in a tertiary care hospital. *Ind J Med Microbial* 2004; 22(2):87-91.
8. Shaikh RA, Memon AQ, Memon S and Rahopoto MQ. Infective (non viral) complications of double Lumen haemodialysis catheter in renal failure patients. *Medical Channel* 2005; 11(2):46-48.
9. Oncu S, Ozsut H, Yildirim A, Ay P, Cakar N, Eraksoy H and Calangu S. Central venous catheter related infections: Risk factors and the effect of glycopeptide antibiotics. *Ann Clin Microbiol and Antimicrobials* 2003; 2:1-10.