Original Article

Surveillance of antibiotic susceptibility patterns among Shigella species in stools of diarrheal children

1. Mahboob Bari 2. Samina Kousar 3. S.A. Jafri 4. S. Junaid Ali

1. Prof. of Biochemistry 2. Asstt. Prof. of Biochemistry, University College of Medicine, The University of Lahore 3 & 4. Prof. of Molecular Biology and Biotechnology, The University of Lahore.

ABSTRACT

Objective: The objective of the present study was to findout the frequency of Shigella spp. in diarrheal patients in Pakistan and the susceptibility of isolated Shigella to different antibiotics: ampicillin, nalidixic acid, meropenem, tetracycline, amikacin, azactam, ciprofloxacin and chloremphenicol.

Design of Study: Experimental Study.

Place and Duration of Study: This Study was conducted at Pediatric Department, Mayo Hospital, Lahore and study was approved by Pakistan Pediatric Association.

Materials and Methods: Stool samples were collected from 50 diarrheal children less than five years of age who were admitted in the Paediatric Department Mayo Hospital Lahore, Pakistan. The samples were cultivated on standard media for Shigella, and Enterobacteriaceae. Susceptibility of Shigella isolates was tested by disk method. **Results:** The frequency of isolation was 80% for Shigella species and 20% in others. Shigella. dysenteriae (65%) was the most frequently isolated species, followed by S. flexneri (23%), S. boydii, (10%) and S. sonnei (5%). All Shigella isolates were 100% sensitive to amikacin, azactam and ciprofloxacin, while multiple drug resistance patterns were observed by all four isolates to other antibiotics.

Conclusions: Shigella resistance is increasing against most commonly used antibiotics. Now it is the time not only to explore new drugs but also to invoke awareness about the hazards of unhygienic conditions and self medication. **Key words**; Antibiotics, susceptibility, Shigella species, Diarrhea Children, Serotyping

INTRODUCTION

In developing countries, diarrhea is considered to be the major causes of childhood morbidity and mortality. About one billion episodes and 3.3 million deaths occur each year among children under five years of age. This ratio is highest in summer¹. Overall, these children experienced on an average 2.6 episode of diarrhea per child per year. About 80% of children died of diarrhea in the first two years of their life. Epidemics are usually transmitted occur due to contaminated food and water in crowding area with poor sanitary conditions². Flies are considered to play a major role in the spread of Shigella because of the low infective dose needed to cause diarrhea³.

Almost all over the world 5 to 10% of dysentery and diarrheal diseases are caused by Shigella pathogens⁴. Diarrhea caused by bacteria Shigella is called Shigellosis and it is the causative factor of diarrhea among young children in developing nations⁵. Shigellosis is an acute gastroenteritis caused by Shigella dysenteriae, Shigella flexneri, Shigella boydii and Shigella soneii ².

Shigellosis symptoms ranges from abdominal pain, cramps, fever, vomiting to bloody diarrhea and mucus contaminated stool. Some strains produce enterotoxin and shiga toxin. Infections are associated with mucosal ulceration, rectal bleeding and drastic dehydration.

Fatality may be as high as 10 to 15 % with some strains⁶. The epidemiology and antibiotic susceptibility of Shigella species changes with the passage of time. Despite the disease being self-limiting, antibiotic treatment is recommended because it reduces the duration of illness and the transmission rate of the disease by shortening the period of excretion of the

disease by shortening the period of excretion of the pathogen⁷. Appropriate antimicrobial therapy of Shigellosis shorten the duration of fever and it apparently also reduces the risk of developing complications. Significantly reducing the spread of infections but constant use of antibiotics can increase the antibiotic resistance of Shigella sp which can cause major problem. Emergence of multiple drug resistance to cost effective antibiotics against Shigella is a matter of concern for the health authorities in developing countries⁸.

The rapid emergence of multidrug-resistant (MDR) strains is largely due to their ability to acquire and disseminate exogenous genes associated with mobile genetic elements such as plasmids, transposons, integrons, and genomic islands⁹. Antibiotic resistance in enteric pathogens is of great concern in developing countries due to indiscriminate use of antibiotics. As Shigella are predominate isolates and show resistance to ampicllin but susceptibility to chloramphenicol with the exception of S. flexneri (susceptible to gentamicin)¹⁰. Some Shigella strains show resistance to

vibramycin, tetracycline and sensitivity against nalidixic acid, norfloxacin, chloramphenicol, amikacin and aztreonam¹¹. Some of the Shigella strains are susceptible to ciprofloxacin and ceftrixone¹².

In Pakistan, self medication and purchase of drugs without prescription is common practice. Thus there is a greater possibility of development of resistant strains due to overuse of antibiotics¹³. The main objectives of this study were to isolate Shigella species from stool samples of diarrheal children of under five year of age and to find out the resistance and susceptibility of Shigell species against different antibiotics.

MATERIALS AND METHODS

Total fifty stool samples were collected in sterile wide mouth containers and rectal swabs from less than five year age group diarrheal children from Pediatrics Department of Mayo Hospital, Lahore, Pakistan. Selenite F broth and specific O (somatic) antigen were used for growth and cauterization of bacterial strains. Stool samples were streaked on SS agar (Salmonella-Shigella) and inoculated in Selenite F broth for subculturing and incubated for 24 to 72 hours respectively. Pathogens were identified as they formed colorless colonies on SS agar ¹⁴(Ellen et al.).

Characterization of strains

The isolates were characterized by performing conventional bacteriological and biochemical methods¹⁵.

- 1. Gram's staining
- 2. Triple sugar iron agar test
- 3. Citrate utilization test
- 4. Indole production test
- 5. Manitol test
- 6. Urease test

Serotyping

Shigella are composed of four species or serogroup that are referred by A, B, C and D. Serogroup A refers to S. dysenteriae, B refers to S. flexneri, C corresponds to S. boydii and D to S. soneii. Shigelal species were confirmed with polyvalen (serogroup A-D) antisera. Shigella isolates tested by slide agglutination with polyvalent A-D Shigella antisera. Isolates that agglutinate with antisera were reported as presumptive Shigella species¹⁶.

Antibiogram pattern

Antibiogram pattern of isolated strains were determined on Mueller- Hinton agar. Each culture to be tested for antibiotic susceptibility was streaked onto non inhibitory agar medium. For comparison, the anti microbial susceptibilities of isolates from the standard culture were determined by standard disk method. E. coli American Type culture collection (ATCC). Zones of inhibition were determined with the help of list break points of antibiotics¹⁷.

RESULTS

In present study, total fifty stool samples were collected from diarrheal children of less than five year age. Out of 50, 32 were boys (64%) and 18 were girls (36%). Stool samples were collected as Shigella is largely excreted through stool. Shigella was isolated from a number of commercially prepared plating media used with members of Enterobacteriaceae. Shigella species were isolated in 40 samples (80%) and 10 samples contained other members of Enterobacteriaceae (20%) such as Salmonella and E.coli. All pathogenic forms of Shigella were confirmed upto species level by serotyping. All Shigella isolates were tested by slide agglutination with polyvalent A-D Shigella antisera. Out of forty, 26 (65%) were S. dysenteriae, 8 (23%) were S. flexneri, 4 (10%) were S. boydii and 2(5%) were S. soneii. Boys and girls have different rate as presented in Table No.1.

Table No.1: Prevalence and frequency of different bacteria isolated from diarrheal patients

successus isolated from diarrical patients						
Bacterial species	Number	Boys	Girls			
S. dysenteriae	26	17	9			
S. flexneri	8	6	2			
S. boydii	4	1	3			
S. soneii	2	2	0			
Others	10	6	4			
Total	50	32	18			

Identification of selected bacterium

The isolated bacterium was subjected to Gram's staining to screen Gram negative, non capsulated shape and colorless growth. Biochemical tests for identification of selected strain were performed. Results obtained from these tests are given in table No. 2.

Antibiogram pattern

Antibiogram pattern of isolated strains were determined on Mueller- Hinton agar. Commercially available antimicrobial disks were used and incubated at 37 °C for 24 hours on agar. Zones of inhibition were measured in each case. Most of *Shigella* isolates in the study were found resistant to meropenem and tetracycline and sensitive to amikacin, azactam and ciprofloxacin. Two antibiotics (Chloremphenicol and Nalidixic acid) showed resistance to *S. dysenteriae* and sensitivity to others strains (Table No.3)

Table No. 2: Biochemical characterization of bacterial strains isolated from diarrheal patients of less than

five year of age

Bacteria	Shape	Gram's staining	Manitol	TSI	Citrate test	Ind Test	Urease test
Shigella	Rod	-ve	-	Slant Alkaline	-ve	-ve	-ve
				Butt Acidic			
S.	Rod	-ve	No change	Slant Alkaline	-ve	-ve	-ve
dysenteriae				Butt Acidic			
S. flexneri	Rod	-ve	Acid production	Slant Alkaline	-ve	-ve	-ve
				Butt Acidic			
S. boydii	Rod	-ve	Acid production	Slant Alkaline	-ve	-ve	-ve
			_	Butt Acidic			
S. sonnei	Rod	-ve	Acid production	Slant Alkaline	-ve	-ve	-ve
				Butt Acidic			

Table NO.3: Susceptibility of antibiotics against different *Shigella* species

Antibiotic used	S.	S.	S.	S.
	dysenteriae	flexneri	boydii	sonnei
Amikacin	S (8%)	S (2%)	S (1%)	S (0.5%)
Azactam	S (10%)	S (3%)	S (2%)	S (0.5%)
Ampicillin	S (5%)	S (1%)	R	R (0.5%)
			(0.5%)	
Chloramphenicol	R (5%)	S (2%)	S (2%)	S (1%)
Ciprofloxacin	S (17%)	S (6%)	S (2%)	S (0.5%)
Meropenem	R (3%)	R (2%)	R	R (0.5%)
			(0.5%)	
Nalidixic acid	R (15%)	S (5%)	S (1%)	S (1%)
Tetracycline	R (2%)	R (2%)	R (1%)	R (0.5%)

DISCUSSIONS

The aim of the present study was to isolate Shigella sp. from fecal samples of diarrhea children less than five vears of age. It has been reported that worldwide acute diarrhea disease is the second cause of death among all infectious diseases in children vounger than 5 years of age 18. Total 50 stool samples were collected and subjected to medias for bacterial growth. All isolated species were subjected to Gram's staining and biochemical tests for identification of species. Out of 50 samples 40 contained Shigella sp. and were Gram's negative, rod shaped, with colorless growth and non capsulated. Remaining 10 were belonging Enterobacteriaceae such as Salmonella and E.coli. It was found that S. dysenteriae was more frequently prevailing strain (65%) than other three after serotyping and boys were more victims of Shigella as compare to girls as given in Table 1. Our findings are combatable with previous studies by Kausar et al. 13 who studied frequency of Shigella species and found to be more frequent (19.1%) and S. dysenteriae was more common than other three strains. Biochemical tests showed different results presented in Table 2. These results are in accordance with findings of Uzma et al.11 they

observed Shigella isolates and found indole test to be negative, oxidase negative, citrate negative, urease negative while TSI as positive.

Antimicrobial therapy is recommended for shigellosis as it can shorten the severity and duration of illness, reduce shedding of the organism, and prevent However secondary complication and death. antimicrobial resistance occurred among Shigella species, since 1940s, when sulfonamide resistance among Shigella organism was first detected in Japan 19. In our study, all four isolates showed multiple drug resistance patterns (Table 3). Drug susceptibility of S. dysenteriae showed that their resistance to nalidixic acid, cholramphenicol, tetracycline and meropenem but showed their sensitivity against amikacin, azactam, ciprofloxacin and ampicillin. These results are in conformity with findings of Atif et al.20 they studied S. dysenteriae S and E. coli resistance against commonly used antimicrobial agents i.e. amoxicillin. chloamphenicol, tetracycline, cotrimoxazole, nalidixic acid, sulfonamide and neomycin and sensitive to amikacin, azactam and ciprofloxacin. S. flexneri isolates were resistant to meropenem and tetracycline while these were found sensitive to nalidixic acid, cholramphenicol, amikacin, azactam, ciprofloxacin and ampicillin. The previous findings quoted by Uzma et al.11 also showed the same trend, hence substantiates our results.

Antibiotics susceptibility of S. boydii showed resistance to ampicillin, tetracycline and meropenem but give susceptibility towards nalidixic acid, cholramphenicol, amikacin, azactam and ciprofloxacin. These are in conformity with the findings of Urio et al. ¹⁰ they also found S. boydii resistant to ampicillin, sulphtriad and cepalothin. Ciprofloxacin and chloremphenicol were the most effective antimicrobial agents against S. boydii.

In our study it was also seen that S. sonii were resistant to ampicillin, tetracycline and meropenm while

susceptible to amikacin, azactam, nalidixic acid, ciprofloxacin and chloremphenicol. These results are in line with Isenbarger et al. 21 studies as they also found S. sonii strains resistant to ampicillin and meropenem and susceptible to nalidixic acid, ciprofloxacin and chloremphenicol.

CONCLUSIONS

It can be concluded from the present study, in heavily populated areas of Pakistan, ecosystem contains high background level of faecal population associated with the transmission of enteric pathogens through water, food, human and animals. In presence of these factors gastroenteritis remains one of the major health problems. *Shigella* resistance is increasing against most commonly using antibiotics. Exploring of new drugs and to inculcate hygienic awareness among the mass is need of the day. Self medication and purchases of drugs needs to be under legal cover.

REFERENCES

- 1. Ezzat OG, Mohammad MA, Abdol VM, Teena DSL, Azad RM, Ali RA, et al. Epidemiology of Shigella associated diarrhea in Gorgan, north of Iran. J Gastroenterol 2007; 13(3): 129-132.
- 2. Chiou CS, Chen JH. Molecular epidemiology of Shigella flexneri outbreak in a mountainous township in Taiwan, China. J Clinic Microbiol 2001; 39(3): 1048-1056.
- 3. Dupont HL, Levine MM, Formal RB. Shigellosis and implications for expected mode of transmissions. J Infect Dis 1989; 159(6): 1126-1128.
- Ahmed AM, Furuta K, Shimomura K, Kasama Y, Shimamoto T. Genetic characterization of multidrug resistance in Shigella spp. from Japan. J Med Microbiol 2006; 55(Pt 12):1685-1691.
- Nathoo KJ, Porteous JE, Siziya S, Wellington M, Mason E. Predictors of mortality in children hospitalized with dysentery in Harare, Zimbabwe. Cent Afr J Med 1998; 44(11): 272-276.
- Bogaerts J, Verhaegen J, Munyabkali JP, Mukantabana B, Lemmens P, Vandeeven S, et al. Antimicrobial resistance and serotype of Shigella isolates in Kigalli. Rawanda diagnostics microbiology of infectious diseases. J Microbiol 1997; 28(4): 165-171.
- Ashkenazi, S. Shigella species. In: Yu VL, Merigan TC, Borriere SL, editors. Antimicrobial therapy and vaccines. 1sted. Baltimore: Williams & Wilkins Press; 1999. p. 382-387.
- 8. Panhorta BR, Saxena AK, Al Muhim K. Emergence of Nalidixic acid resistance in Shigella soneii isolated from patients having diarrhea

- disease: Reported from eastern province of Saudi Arabia. Jpn J Infect Dis 2004; 57(3):116-118.
- 9. Magnus RDA, Guerout AM, Mazel D. Bacterial resistance evolution by recruitment of superintegron gene cassettes. Mol Microbiol 2002; 43(6):1657-1669.
- 10. Urio EM, Collision EK, Gshe BA, Sebuny TK, Puchanes M. Shigella and Salmonella strains isolated from children under five years in Gaborne, Botswana and their antibiotics susceptibility pattern. J Trop Med Int Health 2001; 6(1):55-59.
- 11. Uzma A, Noor S, Abdus S, Ali AQ. Identification, characterization and antibiotic susceptibility of Salmonella and Shigella species isolated from blood and stool samples of patients visiting at National institute of health (NIH) Islamabad. J Med Sci 2002; 2(2): 85-88.
- 12. Sumathi S, Jenifer MN, Kevin J, Mike H, Frederick JA, Eric DM. High prevalence of antimicrobial resistance among Shegella isolates in the United States tested by national antimicrobial resistance monitoring system (NARMS) from 1999 to 2002. Antimicrob. Agents Chemother 2006; 50(1): 49-54.
- 13. Kausar K, Shoukat RK, Khadija M, Bertil K, Britt LG. Occurrence and susceptibility to antibiotics of Shigella species in stools of hospitalized children with bloody diarrhea in Pakistan. Am J Trop Med Hyg 1998; 58(6): 353-369.
- 14. Ellen J, Robert SC, Dexter HH, James NM, Jerold AT. Enertoinvasive and enteropathogenic diarrhea: Shigellosis, cholera and others. In: Medical microbiology. New York: WB Saunders; 1994. P. 316-318.
- 15. WHO/CDS/CSR/EDC/99.8. Laboratory Methods for the Diagnosis of Epidemic Dysentery and Cholera. Georgia: CDC Atlanta; 1999. P. 41-53.
- 16. Edwards PR, Ewing WH. Identification of Enterobactriaceae. 3rd ed. USA: Minneapolis Burges Publishing Co; 1972. p. 32-35.
- 17. Cheesbrough M. Enteric gram negative rods. In: Medical microbiology manual for tropical countries. UK: University press Cambridge; 1991. p. 255-260.
- 18. Jafari F, Garcia-Gil L, Salmanzadeh-Ahrabi S, Shokrzadeh L, M Aslani, Pourhoseingholi M, et al. Diagnosis and prevalence of enteropathogenic bacteria in children less than 5 years of age with acute diarrhea in Tehran children & Apos's hospitals. *J Infect* 2009; 58(1): 21-27.
- 19. Lima AAM, Lima NL, Pinho MCN, et al. High frequency of strains multiply resistant to ampicillin, timethoprim- sulfamethoxazole, streptomycin, clindamycin, chloramphenicol and teracyclin isolated from patients with shigelolsis in Northeastern Brazil during the period 1988-1993.

- Antimicrobiol Agents Chemotherapy 1995; 39 (S):256-259.
- 20. Atif AA, Hani O, Alawaiya MM, Hassan AM, Abdlla B, Zein K, et al. Antimicrobial agent resistance in bacterial isolates from patients with diarrhea and urinary tract infection in Sudan. Am J Trop Med Hyg 2000(5-6); 63: 259-263.
- 21. Isenbarger DW, Hoge CW, Chittima PS. Comparative antibiotic resistance of diarrheal pathogens from Vietnam and Thailand, 1996-1999. Emerging J Infect Dis 2002; 8(2):2-10.

Address for Corresponding Author:

Professor Mehboob Bari,
Assistant Professor, Department of Biochemistry,
University College of Medicine,
University of Lahore, 1-KM Defense Road, OFF
Raiwaind Road, Lahore, Pakistan.
Tel: (Office): 042-35321457 Ext.116,
Email: samphdbio@gmail.com
saminakausar@.uol.edu.pk