Original Article

A Comparative Study of Cross and Parallel **Kirschner-Wires Fixation in Gartland Type-III** Supracondylar Fracture of Humerus in Children

1. Habib Ullah Shah

1. Assistant Professor Orthopedic Surgeon & Head of Department, D.G. Khan College, D.G. Khan

ABSTRACT

Aims and Objective: To compare the anatomical and functional results of open reduction and internal fixation of supracondylar fracture of humerus in children with parallel and cross K-wire fixation and to determine the best method of fixation, preventing complications

Study design: A comparative study.

Place and Duration of Study: This study was conducted in Orthopaedics department, District Head Quarter Hospital Dera Ghazi Khan from March 2011 to September 2011.

Materials and Methods: Forty consecutive patients from 4 to 10 years of age (mean age of 6.4 years) with Gartland type-III supracondylar fractures of humerus, received in the emergency department were included in the study.

Results: In this study, patients from 4 to 10 years of age were included. Their mean age was 6.4 years. Their age distribution is shown in Graph-1. Highest numbers of patients were from 6 to 7 years of age. Those were 17 (42.5%). The mean age of the patients in which fracture was fixed by parallel Kirschner wires, was 6.2 years and the mean age of the patients in which fracture was fixed by cross Kirschner wires, was 6.6 years.

Conclusion: On the basis of above mentioned findings and review of the available literature, the conclusion of this study is that cross Kirschner wires configuration is more safer and stronger mode of fixing all Gartland type-III supracondylar fracture of humerus in children.

Key words: Kirschner-Wires Fixation, Gartland Type-III, Supracondylar Fracture of Humerus

INTRODUCTION

It is exclusively a fracture of the immature skeleton¹. The bone in the supracondylar area is weaker during the last part of first decade because it is undergoing metaphyseal remodeling. As the younger child falls with the outstretched arm, the elbow is hyper extended and the tip of the olecranon is forced into the thinnest portion at the depth of olecranon fossa thus fracturing the Supracondylar area.

Supracondylar fracture is the second most common fracture in children (16.6 %) and the most frequent before the age of seven years¹. According to Boyd HB, Altenberg AR² who studied 713 fractures of the elbow in children, 12 years of age or younger, Supracondylar fracture of Humerus is 65.4% of all the fractures of the elbow in children.

Supracondylar fractures occur as two main types: the common extension type and the rare flexion type. According to Wilkins KE, King RE³, 97.7% of the fractures were of the extension type, and only 2.2% were of the flexion type.

Supracondylar fractures were described in the writings of Hippocrates⁴ during the third and fourth century A.D, but it was not until the 1700s that much was written about supracondylar fractures in the classic medical literature. In a series of pediatric extremity fractures published⁵ in 1954, fractures of the supracondylar area had a greater rate of re-reduction, nerve injury, surgical intervention, and poor results than

any other type of extremity fracture. In 1959, GartlandJJ⁶ described three stages of extension type Supracondylar fracture humerus based on the degree of displacement. Type-I:- Un displaced

Type-II:- Displaced but with intact posterior cortex. Type-III:- Displaced with no cortical contact. These are further divided Into Posteromedial and posterolateral

Treatment of supracondylar fractures iscontroversial and often technically difficult; complications are common. Cubitus varus is the most frequent problem with a mean incidence of 30%⁷. Injury to any of the three major nerves around the elbow occurs in 6-16% of cases8.

Type I and type II fractures are usually treated conservatively. A variety of methods of treatment for displaced type III fractures has been recommended including closed reduction and immobilisation, 6 traction by various methods¹⁰ and closed¹¹ or open reduction¹² stabilised by Kirschner wires under image intensifier. Non-operative management by straight lateral traction with the elbow in extension was first reported in 19399 and was later reviewed in a study¹⁰.

Open reduction and internal fixation is done in most of the centers in Pakistan, including ours, due to lack of the facility of image intensifier and decrease in the rate of complications as compared to closed reduction.

MATERIALS AND METHODS

This study was conducted in Orthopaedics department, District Head Quarter Hospital Dera Ghazi Khan from March 2011 to September 2011. Forty consecutive patients from 4 to 10 years of age (mean age of 6.4 years) with Gartland type-III supracondylar fractures of humerus, received in the emergency department were included in the study.

RESULTS

In this study, patients from 4 to 10 years of age were included. Their mean age was 6.4 years. Their age distribution is shown in Graph-1. Highest numbers of patients were from 6 to 7 years of age. Those were 17 (42.5%). The mean age of the patients in which fracture was fixed by parallel Kirschner wires, was 6.2 years and the mean age of the patients in which fracture was fixed by cross Kirschner wires, was 6.6 years.

There were 28 (70%) male patients and 12 (30%) female patients. Out of them, 15 males and 5 females, in which fracture was fixed by parallel Kirschner wires.

There were 13 males and 7 females, in which fracture was fixed by cross Kirschner wires.

Left humerus was fractured in 23 (57.5 %) and Right humerus was involved in 17 patients (42.5 %) as shown in Table-3 and Graph-3. Left humerus was fractured in 12 patients and Right humerus was fractured in 8 patients, in which fixation was done by parallel Kirschner wires. Left humerus was fractured in 11 patients and Right humerus was fractured in 9 patients,in which fixation was done by cross Kirschner wires. All the patients included in the study had Gartland type III fracture of humerus. 34 (85%) of them had posteromedial and 6 (15%) of them had posterolateral displacement of distal segment.

In 20 (50%) patients, Supracondylar fracture of humerus was fixed by parallel and in other 20 (50%) patients, fracture was fixed by cross configuration of Kirschner wires.

Table No.1: Metaphyseal-diaphyseal angle

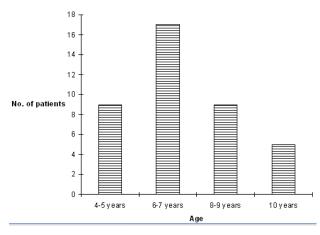

		Parallel wires	Cross wires	P-value	
Immediate postoperative Metaphyseal-diaphyseal angle	No. of patients	20	20		
	Mean	97.25	90	0.007878	
	SD	11.43345	1.685854		
Metaphyseal-diaphyseal angle at 1 st week	No. of patients	16	15		
	Mean	93.125	90.05	0.001785	
	SD	3.221949	3.221949		
Metaphyseal-diaphyseal angle at 3 rd week	No. of patients	16	20		
	Mean	93.5	89.95	0.013659	
	SD	5.853774	1.605091		
Metaphyseal-diaphyseal angle at 6 th week	No. of patients	16	19		
	Mean	93.3125	89.78947	0.012733	
	SD	5.618051	1.474937		
Metaphyseal-diaphyseal angle at 3 rd month	No. of patients	16	19		
	Mean	93.25	89.78947	1.474937	
	SD	89.78947	1.474937	1	
Metaphyseal-diaphyseal angle at 6 th month	No. of patients	16	19		
	Mean	93.1875	93.1875	0.014496	
	SD	5.36928	1.474937	1	

Table No.2: Range of motion

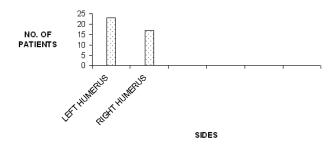

		Parallel wires		Cross wires		Pvalue
		Mean	SD	Mean	SD	
3 rd post- operative week	Experimental fixation arc	30.625	7.274384	31.05263	6.141604	0.851517
	Supinatiion-pronation arc	109.6875	16.47915	116.0526	13.2894	0.214591
6 th post- operative week	Extension-flexion arc	81.25	11.32843	83.68421	9.104655	0.485757
	Supinatiion-pronation arc	126.5625	17.29342	130.2632	13.2784	0.479106
3 rd post- operative month	Extension-flexion arc	94.6875	9.393038	96.31579	11.76649	0.658306
	Supinatiion-pronation arc	133.75	16.38088	137.3684	11.82845	0.454235
6 th post- operative month	Extension-flexion arc	128.75	17.27233	133.1579	17.57607	0.461581
	Supinatiion-pronation arc	156.5625	28.26769	162.8947	19.38755	0.439279

Table No.3: Complications

	Revised fixation	Pin-track infection	Cubitus varus	Anterior bone block	Tourniquet palsy
Parallel wires	4	2	3	1	0
Percentage	20.0	12.5	18.7	6.2	-
Cross wires	-	2,0	1,0	1.0	1.0
Percentage	-	10.0	5.2	5.2	5.0

Graph No.1: Age Distribution

Graph No.2: Side Involved

DISCUSSION

Supracondylar fracture of humerus is a fracture of the immature skeleton. The bone in the supracondylar area is weaker during the last part of first decade because it is undergoing metaphyseal remodeling. In my study, 40 patients from 4 to 10 years of age were included. Their mean age was 6.4 years. Highest numbers of patients were from 6 to 7 years of age were 17 (42.5%).

Wilkins reviewed 4520 patients with supracondylar fracture of humerus in 31 major series¹³. He observed that most of these fractures occurred between the ages of 5 and 8 years.

In a study, 46 patients of supracondylar fractures of humerus were included. Maximum patients were from 7 to 9 years of age¹⁴.

In another study, 62 patients of supracondylar fractures of humerus were included. Maximum patients were from 4 to 9 years of age¹⁵.

46 patients with supracondylar fractures of humerus were included in a study¹⁶. The mean age of the patients was 6 years.

The mean age of 71 patients with supracondylar fractures of humerus, included in a study conducted was 6 years¹⁷. In this study, out of 40 patients, there were 28 males (70%) and 12 female patients (30%).

Boys outnumbered girls by 119 to 111 (52 % and 48% respectively) in a study conducted ¹⁸.

In a study, 71 patients with supracondylar fractures of humerus were included¹⁷. Among them 41 (57.7%) were boys and 30 (42.2%) were girls. In this study, left humerus was fractured in 23 (57.5%) and right humerus was involved in 17 patients (42.5%). These findings were comparable with previous studies as mentioned below

One hundred and forty-five (63%) of the injuries were in the left elbow and eighty-five (37%) were in the right in a study ¹⁸.

In a study conducted on supracondylar fracture of humerus in children, the left side was injured in 22 (62.8%) patients, and the right side in 13 (37.1%) patients¹⁹. Left humerus was fractured in 35 (74.46%) and right in 12 (25.5%) children, in a study conducted by Richard et al²⁰. Posteromedial displacement of the distal segment was observed in more patients as compared to posterolateral,probably secondary to the pull of the triceps, which originates more medially. In this study distal segment of the fracture was displaced posteromedially in 34 (85%) and posterolaterally in 6 (15%) children, which is comparable to the reports of other authors.

Posteromedial displacement of the distal segment was observed in 94 (81.03%) and posterolateral in 22 (18.96%) children in a study¹⁸.

In a study done, Posteromedial displacement of the distal segment was observed in 23 (58.9%) and posterolateral in 16 (41.02%) children²⁰.

In another, displacement of the distal fragment has been specifically noted, 75% of the time the fragment was displaced posteromedially. Acute compromise of either the neural or circulatory status in the extremity is not uncommon after fractures about the elbow in children. Fortunately, most compromises are transient. In this study transient radial nerve palsy was encountered in 2 (5%) children with posteromedial displacement of the distal segment. Complete nerve functions recovered after 2 months in each case. No other neurovascular

(Brachial artery, Median or Ulnar nerve) injury was observed.

In a retrospective review of displaced extension-type supracondylar fractures of the humerus in 101 children revealed neural injuries in 13 (12.8%) children²².

In a study it was observed nerve injuries in 3 (8.8%) out of 34 patients of supracondylar fractures, two of which involved the radial nerve and one the median nerve¹⁹. All resolved spontaneously between four and six months postinjury. One patient had no radial pulse upon presentation. However, the pulse returned promptly with reduction of the fracture.

The incidence of neural injuries in association with supracondylar fracture of humerus has been estimated to range from 5 to 19 per cent in studies done by other authers as well²³.

In a study, transient nerve palsies was observed in 5 (11.1%) out of 46 patients with supracondylar fracture of humerus, 3 of these 5 patients involving the radial nerve and 2 involving the median nerve. Complete nerve functions recovered after 3 months, in each case²⁴.

Four patients (20%) whose fracture was fixed by parallel Kirschner wires, lost fixation and required revised surgery because in the immediate post-operative radiographs, distal segment of the fracture was seen markedly rotated. Not a single patient required revised fixation, in whom fracture was fixed by cross Kirschner wires. This finding was very significant statistically.

It was also reported loss of fixation in 11(13.75%) of 80 patients in whom only two lateral wires had been used¹¹. The loss of fixation was attributed to technical errors, such as failure to engage the proximal and distal cortices and crossing of the wires at the fracture site. The authors concluded that, although the use of two lateral wires eliminates the risk of injury to the ulnar nerve, it is technically very demanding.

In a study the use of parallel wires led to redisplacement of the supracondylar fracture in 4 (57%) out of 7 patients despite an initial anatomical reduction¹⁷.

Cubitus Varus developed in 18.7% of the patients, in which fracture was fixed by parallel wires. Cubitus Varus also developed in 5.2% of the patients, in which fracture was fixed by cross Kirschner wires. This difference was significant statistically. 2 (4.34%) out of 46 patients, whose fracture was fixed by cross wires, developed cubitus varus deformity postoperatively. There was no significant difference in the rate of pin track infection, torniquet palsy and anterior bone block, among both study groups.

CONCLUSION

On the basis of above mentioned findings and review of the available literature, the conclusion of this study is that cross Kirschner wires configuration is more safer and stronger mode of fixing all Gartland type-III supracondylar fracture of humerus in children.

REFERENCES

- 1. Cheng JC, Shen WY. Limb fracture pattern in different pediatric age groups: A study of 3350 children. J Orthop Trauma 1993;7:15-22.
- 2. Boyd HB, Altenberg AR. Fractures about the elbow in children. Arch Surg 1944; 49: 213.
- 3. Wilkins KE, King RE, editors. Fractures in Children. 3rd ed. Philadelphia: Lippincott; 1991.p. 509-828.
- 4. Adams F. Genuine Works of Hippocrates. Baltimore: Williams & Wilkins; 1939.
- 5. Hanlon CR, Estes WL. Fractures in Childhood: A Statistical Analysis. Am J Surg 1954; 87: 312-23.
- 6. Gartland JJ. Management of Supracondylar Fractures of the Humerus in Children. Surg Gynecol Obstet 1959; 109: 145-54.
- 7. Smith L. Deformity following supracondylar fracture of the humerus. Am J Bone Joint Surg 1960: 42-A: 235-52.
- 8. Cramer KE, Green NE, Devito DP. Incidence of anterior introsseous nerve palsy in supracondylar humerus fractures in children. J Pediatr Orthop 1993; 13: 502-5.
- 9. Khare GN, Gautam VK, Kochhar VL, Anand C. Prevention of cubitus varus deformity in supracondylar fractures of the humerus. Injury 1991; 22: 202-6.
- Fowler TP, Marsh JL. Reduction and pinning of pediatric supracondylar humerus fractures in the prone position. J Orthop Trauma 2006;20(4): 277-81.
- 11. Skags DL, Hale JM, Basett J, Kaminsky C, Kay Rm, Tolo VT. Operative treatment of supracondylar fractures of the humerus in children. The consequences of pin placement. Am Bone Joint Surg 2001; 83(5): 735-40.
- 12. Kocher MS, Kasser JR, Waters PM, Bae D, Synder BD, Hresko MT, et al. Lateral entry compared with medial and lateral entry pin fixation for completely displaced supracondylar humeral fractures in children. A randomized clinical trial. Am J Bone Joint Surg 2007; 89(4): 063-12.
- 13. Sankar WN, Hebela NM, Skaggs DL, Flynn JM. Loss of pin fixation in displaced supracondylar humeral fractures in children: causes and prevention. Am Bone Joint Surg 2007;89(4):713-7.
- 14. Lee YH, Lee SK, Kim BS, Chung MS, Baek GH, Gong HS, et al. Three lateral divergent or parallel pin fixations for the treatment of displaced supracondylar humerus fractures in children. J Pediatr Orthop 2008; 2894): 417-22.
- 15. Davis RT, Gorczyca JT, Pugh K. Supra-condylar humerus fractures in children. Clin Orthop Relat REs 2000; 376: 49-55.

- 16. Skags DL, Cluck MW, Mostofi A, Flynn JM, Kay RM. Lateral-entry pin fixation in the management of supracondylar fractures in children. BJ one Joint Surg Am 2004; 86(4): 702-7.
- 17. O'Hara LJ, Barlow JW, Clarke NMP. Displaced Supracondylar fractures of the humerus in children. J Bone Joint Surg 2000; 82: 55-61.
- Arora RK. A Different Method of Pinning of Displaced Extension type Supracondylar Fracture of Humerus in Children. J K Science 2004; 6(1): 28-30.
- 19. Wael A. El-Adl, Mohammed A. El Said, George W. Boghdady, Al-Sayed M. Ali. Results of treatment of displaced supracondylar humeral fractures in children by percutaneous lateral crosswiring technique. Strategies Trauma Limb Reconst 2008; 3(1): 1-7.
- 20. Shannon FJ, Mohan P, Chacko J, D"souza LG. percutaneous lateral cross-wiring of supracondylar fractures of the humerus in children. J Pediatr Orhtop 2004; 24(4): 376-9.
- 21. O'Hara LJ, Barlow JW, Clarke NM. Displaced supracondylar fractures of the humerus in children. Audit changes practice. J Bone Joint Surg Br 2000;82:204–10.

- 22. Skaggs DL, Hale JM, Bassett J, Kaminsky C, Kay RM, Tolo VT. Operative treatment of supracondylar fractures of the humerus in children. The consequences of pin placement. Am J Bone Joint Surg 2001;83:735–40.
- 23. Mazda K, Boggione C, Fitoussi F, Penneçot GF. Systematic pinning of displaced extension-type supracondylar fractures of the humerus in children. J Bone & Joint Surg 2001; 83(6): 88893.
- 24. Iqbal M. Cubitus Varus, a common deformity of elbow following supracondylar fracture of humerus in children treated by closed reduction. J Pak Orthop Assoc 1994; 1: 21-6.
- 25. Barlas K, George B, Hashmi F, Bagga T. Open medial placement of Kirschner wires for supracondylar humeral fractures in children. J Orthop Surg 2008;14(1): 55-7.

Address for Corresponding Author: **Dr. Syed Habib Ullah Shah** Assistant Professor Orthopedic Surgeon D.G Khan Medical College D.G Khan