Original Article

Pomegranate Protects Minocycline Induced Epidermal Pigmentation in the Extremities of Guinea Pigs

1. Sarwath Fatimee 2. Anjum Naqvi

1. PG Student of MPhil Anatomy 2. Head, Dept. of Anatomy, Basic Medical Sciences Institute, Jinnah Post Graduate Medical Centre, Karachi

ABSTRACT

Objective: To investigate the protective effects of Pomegranate on Minocycline induced epidermal pigmentation on the extremities of guinea pigs.

Study Design: An experimental observational study.

Place and Duration of Study: This study was conducted at the Anatomy Department, BMSI, J PMC, Karachi.

Materials and Methods: 60 adult guinea pigs were divided into 3 groups A B and C, A served as control, B given Minocycline, while C given Minocycline with Pomegranate for 8 weeks, after which their skin was processed for histological examination and pigmentation was observed in Masson Fontana stained sections under light microscope.

Results: The melanin pigmentation deposition observed in Minocycline treated group B, distributed densely and extended till stratum corneum as compared to the control group A, while in the Pomegranate treated group C along with Minocycline, the melanin pigmentation was considerably reduced and was observed to be distributed sparsely extended till stratum spinosum.

Conclusion: Based on the present study it is conducted that pigmentary changes induced by Minocycline can be protected by taking pomegranate.

Keywords: Pomegranate, Minocycline, Epidermal Pigmentation, Guinea pigs.

INTRODUCTION

Skin pigmentary abnormalities are seen as aesthetically unfavorable and have led to the development of cosmetic and therapeutic treatment modalities of efficacy¹. varying Unwanted cutaneous hyperpigmentation can also produce a significant psychological stress². Drug induced pigmentary alteration are quite common³. A variety of drugs have been reported to induce hyperpigmentation⁴. Regarding this, minocycline, a synthetic broad spectrum antimicrobial tetracycline whose common application in the treatment of pneumonia, acne infections of skin genital and urinary systems⁵ and rheumatoid arthritis⁶ has been associated with cutaneous hyperpigmentation with its prolonged use^{7,8}.

Hyperpigmentary disorders are often treated with hydroquinones, retiniods and tyrosinase inhibitors⁹. Increasing consumer interest in skin care and treatment products derived from natural sources has driven increased research into novel skin depigmentating agents10.

Pomegranate (Punica granatum, Punicaceae) a traditional Chinese medicine¹¹ has been extensively used in the folk medicine of many cultures 12-14. Some previous studies cited by Moawad et al¹⁵ had proved that the products of pomegranate tree (Including peels, juice, leaves, seeds, flowers etc) have medicinal and industrial importance. Pomegranate is a rich source of polyphenoic compounds anthocyanins (such

cyanidine, delphinidin) and hydrolysable tannins (such as ellagic acid, gallagic acid), which account for 92% of antioxidant activity of the whole fruit16. Its main constituent, ellagic acid, a naturally occurring polyphenol, when applied topically suppresses U-V induced pigmentation in brownish guinea pigs, as it has a high affinity for copper at the active site of tyrosinase enzyme¹⁷⁻¹⁹. Tyrosinase is the rate limiting enzyme for melanin synthesis¹⁰ which synthesized by melanocytes situated in the basal epidermis and are transferred to the surrounding epidermal keratinocytes. 19,20 The type and amount of melanin synthesis and its distribution pattern in the surrounding keratinocytes determines the actual color of the skin¹⁰. Therefore, chelating copper at the active site of tyrosinase enzyme inhibits the activity of it²², which is also being proved by Zho and Goa²³.

In the light of above mentioned studies, this study was conducted to observed the protective effects of pomegranate against the minocycline induced pigmentation in the epidermis and note down the histological changes occurring in this regard.

MATERIALS AND METHODS

This study was conducted in the department of Anatomy, Basic Medical Sciences Institute (BMSI), Jinnah Postgraduate Medical Centre (JPMC), Karachi. on 60 adult male guinea pigs weighing between 450 – 650 grams, and were divided into 3 main groups A, B and C.

Group A animals were served as control, group B received Minocycline 0.02mg/G body weight/ day orally, and group C received Minocycline 0.02mg/G/day orally along with pomegranate 0.9mg/G body weight/day orally for 8 weeks.

After completion of the experimental period all the guinea pigs were sacrificed under ether anesthesia in a glass container and one skin fragment of two inches size, from both upper and lower limbs and of abdomen were taken from each animal. The fragment from each extremity was fixed in 10% formalin for 24 hours and processed for paraffin embedding, and then paraffin blocks were made in the tissue embedding system. 4 to 5 micron thick sections were cut on rotatory microtome and mounted on albumenized glass slides. After that,

they were stained with the Haematoxylin and Eosin and Masson's Fontana stains for histological studies under light microscope and the results were graded and recorded.

RESULTS

In the haematoxylin and eosin stained sections of control group A animals, the epidermis of abdomen and both extremities observed under 40 X showed 3 to 5 layers of cells in addition to stratum corneum and their cytoplasm with nuclei were visualized normal in appearance. The cells in all layers were stained uniformly.

Table No. 1: Distribution of melanin deposition in all epidermal layers indifferent groups

Group	Period 0f	Treatment Given	Sparse*	Patchy**	Dense***
	Treatment				
A		Laboratory diet ad libitum			
Control	8 Weeks		+		
B Minocycline		0.02mg/G body			
treated	8 Weeks	weight/day(Orally)			+++
C Minocycline +		0.02mg/G body weight/			
Pomegranate	8 Weeks	day + 0.09mg/G body		++	
treated		weight/ day(Orally)			

⁸Sparse: scatteredly distributed(+),**Patchy: patchy distributed,***Dense: uniformly distributed

Table No. 2: Extension of melanin deposition in all epidermal layers in different groups

Group	Period of	Treatment Given	Normal*	Grade I**	Grade II***
	Treatment				
A		Laboratory diet ad libitum			
Control	8 Weeks		+		
В		0.02mg/G body			
Minocycline treated	8 Weeks	weight/day(Orally)			+++
С		0.02mg/G body weight/			
Minocycline +	8 Weeks	day + 0.09mg/G body		++	
Pomegranate treated		weight/ day(Orally)			

^{*}Normal: extended till stratum basale (+) **Grade-I: extended till stratum spinosum (++) ***Grade-II: extended till stratum corneum (+++)

In the Minocycline treated group B animals, tissues were observed under 40 X and showed all the layers of epidermis of both extremities bearing the same morphology as that of control group A animals, but there is black colored pigment deposition was seen within the cells as well as outside the cells in all the layers of the epidermis.

Meanwhile in the protective group C treated with pomegranate along with Minocycline, the morphology is same as observed in control group A and there is no deposition of any pigment within or outside the cells.

The Masson Fontana stained sections were observed under 40 X. In the control group A animals tissues, the melanocytes were dark black and brown black in color. They were in scattered manner; located in the epidermal

basal layer. They were oval to irregular in shape with pale staining cytoplasm. The distribution of melanin pigment deposition was of sparse pattern (+) and extension was of normal grade. (Table 1 and Table 2, Fig 1)

In the Minocycline treated group B animals, the morphology shows no significant changes but the deposition of melanin pigment was of dense pattern (+++) and extension was of grade II. (Table 1 and Table 2, Fig 2).

In the Minocycline and pomegranate treated group C animals, the morphology shows no significant changes as compare to control group A but the deposition of melanin pigment was of Patchy to sparse pattern (++)

and extension was of grade I.(Table 1 and Table 2, Fig 3).

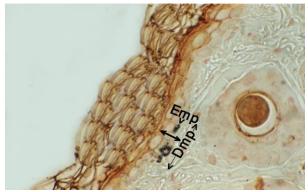


Figure No. 1: Epidermis of group A control animals showing distribution of melanin pigment (Dmp) and extension of melanin pigment (Emp) in Masson Fontana stain, (Photomicrograph 40 X).

Fig 2: Epidermis of group B Minocycline treated animals showing distribution of melanin pigment (Dmp) and extension of melanin pigment (Emp) in Masson Fontana stain, (Photomicrograph 40 X).

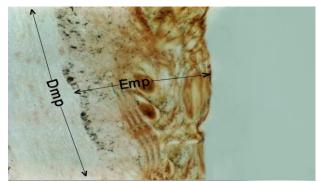


Figure No. 3: Epidermis of group C Minocycline and Pomegranate treated animals showing distribution in melanin pigmentation (Dmp) and extension of melanin pigment (Emp)deposition in Masson Fontana stain.(Photomicrograph 40 X).

DISCUSSION

Pomegranate (punica granatum) has been used extensively in traditional medicines in many countries^{12,14,16,17,19}. Its main constituent, ellagic acid, a naturally occurring polyphenol, is reported to have the

high affinity for copper at the active site of tyrosinase and inhibits its activity by binding to the copper¹⁷⁻²³. The tyrosinase is the rate limiting enzyme in the biosynthesis of melanin. Thus inhibiting tyrosinase, inhibit the melanin synthesis proven in various international studies^{10,17,18,19,23}.

Melanin is synthesized in the melanocyte in which tyrosinase played an important role. As a result of tyrosinase activity, tyrosine is transformed first into 3, 4-dihydrooxyphenylalanine (dopa) and then into dopaquinone, which is converted, after a series of transformations, into melanin. Once formed, melanin within the membrane bounded granules called melanosomes, migrates within the dendrites of melanocytes, and is transferred to the cells of all epidermal layers, whish act as a depot and create the pigmentation of skin²⁰.

The histological changes in the Minocycline treated group B animals showed densely distributed black brown pigment deposition as compared to the control group A. This black brown pigment is melanin as it is being stained by the Masson's Fontana stain. It would be consider that Minocycline may induce pigmentation as reported by Mounton et al⁸ about the mechanism of Minocycline pigmentation which may involve a reactive quinine iminium ion metabolite, iron chelation, or stimulation of melanin production. Burns et al²¹ cited Minocycline association with post inflammatory hyperpigmentation in women who have undergone sclerotherapy. The diffuse muddy brown discoloration in the sun exposed areas of skin (type III reaction) induced by Minocycline-stimulated melanocytes that can lead among other things to deposits of melanin or Minocycline melanin complexes at the epidermal basal membrane 4

The result of group C Minocycline treated animals along with pomegranate shows that melanin pigment deposition in the epidermal layers had markedly decreased as compare to Minocycline treated group B animals. This is more obvious in the Manson's Fontana stained sections. As the melanin is formed after the conversion of tyrosine into dopa which is the rate limiting step being catalyzed by tyrosinase, therefore, inactivation of tyrosinase leads to the inhibition of melanin formation. Ellagic acid inhibits the melanin synthesis by suppressing tyrosinase enzyme activity as it penetrate into its active site and chelate firmly with copper present there. This had been proven that after the topical application of ellagic acid rich pomegranate extract, the melanin content of skin had been reduced¹⁸ The result is also in agreement with Kasai et al¹⁹ who reported that the orally administered ellagic acid rich pomegranate extract provides the protective effects on the pigmentation of human skin caused by U-V irradiation.

CONCLUSION

Based on the present study it is conducted that pigmentary changes induced by Minocycline can be protected by taking pomegranate. This suggests that the result could be considered promising enough in humans who are on Minocycline with pomegranate for long term duration. The present work is under progress for further extended studies.

REFERENCES

- 1. Ebanks JP, Wickett RR, Boissy RE. Mechanism regulating skin pigmentation: The rise and fall of complexion coloration. Int J Molecular Sci 2009;10:4066-4087.
- 2. Park HY, Lee J, Gonzalez S, Middelkamp-Hup MA, Kapasi S, Peterson S, et al. Topical application of a protein kinase C inhibitor reduces skin and hair pigmentation. J Investigative Dermatol 2003;1:159-166.
- 3. Kovarik CL, Spielvogel RL, Kantor GR, editors. Pigmentary disorders of skin. Lever's histopathology of skin. 10th ed. Lippincott Williams & Wilkins publications; 2010.p.705.
- 4. Brenner M, Hearing VJ. Modifying skin pigmentation-approaches through intrinsic biochemistry and exogenous agents. Drug Discov Today Dis Mech 2008;5(2);189-199.
- 5. Silveira MG, Torok NJ, Gossard AA. Minocycline In The treatment of patients with primary sclerosing cholangitis. Am J Gastroentrol 2009; 104:83-89.
- 6. Fay BT, Whiddon AP, Puumala S, Black NA, O'Dell JR, Mikuls TR. Minocycline-Induced Hyperpigmentation In Rheumatoid Arthritis. Clin J Clinical Rheumatol 2008;14:17-20.
- 7. Bowen AR, McCalmont TH. The Histopathology of subcutaneous minocycline pigmentation. J Am Acadmy Dermatol 2007;57:836-839.
- 8. Mouton RW, Jordaan HF, Schneider JW. A New Type Of Minocycline-induced Cutaneous Hyperpigmentation. Clinical and Experimental Dermatol 2004; 29: 8-14.
- Seiberg M, Paine C, Sharlow E, Andrede-Gordon P, Costanzo M, Eisinger M. Inhibition of melanosome transfer results in skin lightening. J Investigative Dermatol 2000;115:162-167.
- 10. Pervez S, Kang M, Chung HS, Cho C, Shin MK, Bae H. Survey and Mechanism of skin depigmentating and lightening agents. Phythotheraphy Research 2006;20:921-934.
- Lei F, Xing DM, Xiang L, Zhao YN, Wang W, Zhang LJ. Pharmacokinetic Study of Ellagic Acid In Rat After Oral Administration of Pomegranate Leaf Extract. J Chromatography B 2003:189-194.
- 12. Aviram M, Dornfeld L, Rosanblat M, Volkova N, Kaplan M. Coleman, et al. Pomegranate juice consumption reduces oxidative stress, artherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic

- apolipoprotein E-deficient mice. Am J Nutrition 2000;71:1062-76.
- 13. Lansky E, Shubert S, Neeman I. Pharmacological and Therapuetic Properties of Pomegranate. Options Mediterraneennes 2000;42:231-235.
- 14. Dell'Agli M, Galli GV, Bulgari M, Basillico N, Romeo S, Bhattacharya D, et al. Ellagitannins of the fruit rind of Pomegranate (Punica granatum) antagonist in vitro the host ofinflammatory response mechanisms involved in onset of malaria. Malaria J 2010;9:208.
- 15. Moawad SS, Hassan SA, Al Barty AM. Enumeration and estimation of insect attack fruits of some cultivars of Punica granatum. African J Biotechnol 2011;10(19)3880-3887.
- 16. Malik A, Afaq F, Sarfaraz S, Adhami VM, Syed DN, Mukhtar H. Pomegranate Fruit Juice For Chemoprevention And Chemotherapy of Prostate Cancer. PNAS 2005;102(41)14813-14818.
- 17. Shimogaki H, Tanaka Y, Tamai H, Masuda M. In Vitro and in Vivo Evaluation of Ellagic Acid on Melanogenesis Inhibition. Int J Cosmetic Sci 2000; 22:291-303.
- 18. Yoshimura M, Watanabe Y, Kasai K, Yamakoshi J Koga T. Inhibitory Effect of an Ellagic Acid-Rich Pomegranate Extact on Tyrosinase Activity and Ultraviolet- Induced Pigmentation. Biosci Biotecnol Biochem 2005;69(12):2368-2373.
- Kasai K, Yoshimura M, Koga T, Arii M, Kawasaki S. Effects of Oral Adminstration of Ellagic Acid-Rich Pomegranate Extact on Ultraviolet- Induced Pigmentation In The Human Skin. J Nutitonal Sci and Vitaminol 2006;52:383-388.
- Junqueira LC, Carneiro JC. Basic Histology. Lange Medical Books 10th ed. McGrow-Hill: USA; 2003. p. 373-374.
- 21. Burn T, Breathnach S, Cox N, Griffiths C. Rook's textbook of dermatology. Wiley-Blackwell publication: UK; 2010.p.58.26-29.
- 22. Ando H, Kondoh H, Ichihashi M, Hearing VJ. Approaches to Identify Inhibitors of Melanin Biosynthesis via the Quality Control of Tyrosinase. J Investigative Dermatol 2007;127:751-761.
- 23. Zho W, Goa J. The Use of Botanical Extracts as Topical Skin-Lightening Agents for the Improvement of Skin Pigmentation Disorders. J Investigative Dermatol Symposium Proceedings 2008;13:20–24.

Address for Corresponding Author: Dr. Sarwath Fatimee

Anatomy Department, Basic Medical Sciences Institute, Jinnah Post Graduate Medical Centre, Karachi. Cell # 0092-302-2100393