

Hypovitaminosis B₁₂ is Associated with Long Term Consumption of Proton Pump Inhibitors

Muhammad Akbar¹, Abdul Karim Soomro³, Fatima Qureshi⁴, Farheen Malik², Haji Khan Khoharo² and Shoukat Ali Memon²

ABSTRACT

Objective: Determining vitamin B₁₂ levels in subjects using Proton pump inhibitors (PPIs) for more than 3 years reporting at a tertiary care hospital of Sindh

Study Design: Case control study

Place and Duration: This study was conducted at the Department of Pathology and Biochemistry, Bilawal Medical College from January – December 2017.

Materials and Methods: A sample of 100 subjects was selected; 50 cases using PPIs > 3 years duration and 50 controls (no PPIs) by convenient sampling through inclusion and exclusion criteria. 5 ml blood was collected; 3 ml put into EDTA tubes for complete blood counts and 2 ml for sera. Vitamin B₁₂ was measured by ELISA assay. Results were analyzed on SPSS (ver 21.0) by Student t-test and Chi-square test at 95% CI (P ≤ 0.05).

Results: Vitamin B₁₂ in control and cases was found as 315.15±41.33 vs. 276.91±90.1 pg/dl (P=0.0001). Frequency and % of normal, borderline deficiency, deficiency and severe deficiency of vitamin B₁₂ were noted as 31 (62%) vs. 11 (22%), 9(18%) vs. 21 (42%), 7 (14%) vs. 11 (22%), and 3 (6%) vs. 7 (14%) (P=0.0001). Cumulative vitamin B₁₂ deficiency in 38% of control and 78% of cases (P=0.0001).

Conclusion: In conclusion, the long term use of Proton pump inhibitor is associated with hypovitaminosis B₁₂.

Key Words: Proton pump inhibitors, Hypovitaminosis B₁₂, MCV, Sindh

Citation of article: Akbar M, Soomro AK, Qureshi F, Malik F, Khoharo HK, Memon SA. Hypovitaminosis B₁₂ is Associated with Long Term Consumption of Proton Pump Inhibitors. Med Forum 2019;30(12):6-9.

INTRODUCTION

Proton pump inhibitors (PPIs) are widely used for acidity problem. PPIs are used as first line therapy for acid peptic disease and are potent for day time dyspepsia.¹ It is claimed the PPIs inhibit approximately 80% to 95% acid production at optimal dose. PPIs are now the most frequently prescribed drugs the World over. Its major indications are in acid-peptic disorders, peptic ulcers, gastro-esophageal reflux disease (GERD) and Zollinger-Ellison syndrome (ZES).^{1,2} One major drawback of acid suppression is inhibition of intrinsic factor secretion that is essential for the vitamin B₁₂. Vitamin B₁₂ (cobalamin) is involved as co-enzyme in biochemical reactions catalyzed by methionine synthetase and methylmalonyl-CoA mutase.^{3,4}

¹. Department of Medicine / Medicine and Allied Medical Sciences², Isra University, Hyderabad.

³. Department of Pathology / Biochemistry⁴, Bilawal Medical College, LUMHS, Jamshoro, Sindh

Correspondence: Dr. Muhammad Akbar, Assistant Professor of Medicine, Isra University, Hyderabad.

Contact No: 0300 3064 840

Email: giggly786@gmail.com

Received: September, 2019

Accepted: October, 2019

Printed: December, 2019

Body produces 2 active co-enzymes; the “methyl-cobalamin” and “S- adenosyl cobalamin” from the vitamin B₁₂ and function as 1-carbon donor for the nucleotide synthesis. Methionine synthetase and methylmalonyl-CoA mutase need methyl- cobalamin and S- adenosyl cobalamin respectively.^{3,4} Vitamin B₁₂ is necessary for the myelin sheath and nuclear maturation of rapidly proliferating cells such as those of bone marrow along with folic acid. Vitamin B₁₂ deficiency leads to a number of disorders such as megaloblastic anemia, hemolysis, pancytopenia, myelopathy, neuropathy, and malabsorption syndrome.^{5,6} Thus vitamin B₁₂ deficiency has been thought resulting from long-term use of PPIs. Previous studies⁵⁻⁸ suggest long term consumption of PPIs lead to vitamin B₁₂ deficiency. Gastric acid suppression by PPIs inhibits vitamin B₁₂ gut absorption through several mechanisms. One is the altered extraction of vitamin B₁₂ bound to dietary proteins by changed intra gastric pH. Second is the gastric intrinsic factor deficiency through suppression of parietal cell and third is the intestinal bacterial growth which increases bacterial consumption of vitamin B₁₂.^{5,6} Currently, the PPIs are widely used drugs in Pakistan⁹ this needs evaluation of vitamin B₁₂ in the long term consumers of proton pump inhibitors. As the vitamin B₁₂ is essential for biochemical reactions, it is worth to analyze the blood levels of this vitamin among chronic long term users of PPIs in the society. The present study will provide

information on vitamin B₁₂ deficiency (hypovitaminosis B₁₂) in the setting of long term PPIs consumption. The present study may help to make awareness on the use of PPIs in relation to vitamin B₁₂ deficiency and associated deficiency disorders.

MATERIALS AND METHODS

The present case control study was planned and conducted at the Department of Pathology and Biochemistry, Bilawal Medical College from January–December 2017. Sample size was calculated by 'sampling for proportions'. A sample of 50 PPIs users were labeled as cases (n=50). Age and gender matched control (n=50) were also studied. A case was defined as using PPIs for >3 years duration and a control as never used PPIs. Cases were selected by convenient sampling by inclusion and exclusion criteria. Inclusion criteria were; age 25- 50 years, both gender, PPIs of >3 years duration, PPIs dose of \leq 40 mg daily. Strict vegetarians, chronic diarrhea, malabsorption syndrome, pancreatic disease, autoimmune disease process, history of abdominal tuberculosis, thyroid disorders, diabetic patients and chronic liver disease, were excluded. Subjects taking calcium supplements, vitamin pills and meat and liver during last 3 months were excluded. Subjects attending the outpatient department of the hospital, using the PPIs for long durations were communicated. Drug history was inquired. Volunteers were fully intimated the purpose of study. And willing participants were asked to sign consent form. Benefits and harms of study protocol were explained by researcher. Volunteers were informed that the study will cause no harm and no expense of laboratory investigations. A proforma of study protocol was used for proper history, physical findings, clinical problem, and blood findings. Confidentiality of data was ensured. Volunteers were informed that the data will never be publicized. Medical officers were asked to help selecting the cases to fulfill the inclusion and exclusion criteria. Volunteers equaling the selection criteria were asked for blood sampling. Volunteers were taken to examination couch; a tourniquet was put above the cubital fossa. Body part was sterilized with alcohol swab. A sterilized Disposable syringe (BD, USA) was used for venesection. 5 ml blood was collected in Disposable syringe (BD, USA). 3 ml of blood sample was put into EDTA tubes, and processed for complete blood counts in a hematology analyzer. 2 ml blood was used to extract sera by centrifugation for measuring vitamin B₁₂ by ELISA assay. Vitamin B₁₂ levels were defined as; >240pg/ml as normal, 170-240 pg/ml as borderline deficiency, <170 pg/ml as deficiency and <100 pg/ml as severe vitamin B₁₂ deficiency.⁴ Data was typed on excel sheet and copied to SPSS (version 21.0) for statistical analysis. Student t-test analyzed the numerical variables and output presented as mean and standard deviation (SD). Chi-square test analyzed the

categorical data and output tabulated as frequency and %. Data was analyzed at 95% CI (P \leq 0.05).

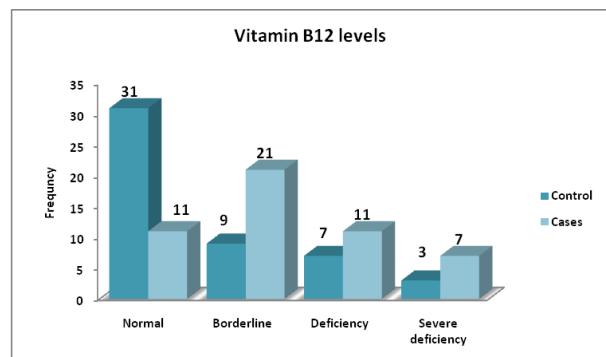
RESULTS

Age (mean \pm SD) of control and cases was 47.5 \pm 11.9 and 48.3 \pm 9.57 years respectively (P=0.81). Male and female in control and cases were noted as 27 (54%) vs. 26 (52%) and 23 (46%) vs. 24 (48%) respectively (P=0.076). Hematocrit, hemoglobin, RBC counts and Platelets shows statistical difference between control and cases (P>0.05) (Table-1).

Table No. 1: Demography, Vitamin B₁₂ and Hematological findings of study subjects (n=100)

	Control	Cases (PPI)	P-value
Age (years)	47.5 \pm 11.9	48.3 \pm 9.57	0.81
Male	27 (54%)	26 (52%)	
Female	23 (46%)	24 (48%)	0.076
Hematocrit (Hct.) (%)	43.5 \pm 1.29	37.4 \pm 5.07	0.014
Hemoglobin (g/dL)	12.3 \pm 2.01	11.6 \pm 2.5	0.001
White Blood cells (/ μ L)	9870.6 \pm 13.5	9671.6 \pm 12.1	
RBC counts ($\times 10^9/\mu$ L)	4.15 \pm 0.91	3.91 \pm 1.35	0.071
MCV (fl)	76.5 \pm 3.31	91.4 \pm 9.35	0.0001
Platelet ($\times 10^9/\mu$ L)	365 \pm 1.31	423.4 \pm 0.95	0.054
Vitamin B ₁₂ (pg/dL)	315.15 \pm 41.33	276.91 \pm 90.1	0.0001

Table No.2: Vitamin B₁₂ levels in different categories (n=100)


Vitamin B ₁₂ categories	Control	Cases	P-value
Normal (>240 pg/ml)	425.1 \pm 35.1	323.5 \pm 27.3	0.0001
Borderline deficiency (170-240 pg/dl)	193.8 \pm 15.6	189.6 \pm 10.4	
Deficiency (<170 pg/dl)	160.9 \pm 5.2	131.9 \pm 35.2	
Severe deficiency (<100 pg/dl)	91.8 \pm 5.7	51.7 \pm 13.5	

Mean corpuscular volume (MCV) and vitamin B₁₂ in control and cases shows statistical significant difference. MCV (mean \pm SD) in control and cases was noted as 76.5 \pm 3.31 vs. 91.4 \pm 9.35 fl (P=0.0001).

Vitamin B₁₂ (mean \pm SD) in control and cases were noted as 315.15 \pm 41.33 vs. 276.91 \pm 90.1 pg/dl (P=0.0001). Vitamin B₁₂ (mean \pm SD) as normal, borderline deficiency, deficiency and severe deficiency shows statistical difference between control and cases (Table- 2). Frequency and % of normal, borderline deficiency, deficiency and severe deficiency of vitamin B₁₂ were noted as 31 (62%) vs. 11 (22%), 9(18%) vs. 21 (42%), 7 (14%) vs. 11 (22%), and 3 (6%) vs. 7 (14%) (P=0.0001). Cumulative vitamin B₁₂ deficiency was noted in 38% of control and 78% of cases (P=0.0001).

Table No.3: Frequency of Vitamin B₁₂ in study subjects (n=100)

Vitamin B ₁₂	Control	Cases	P-value
Normal levels (>240 pg/ml)	31 (62%)	11 (22%)	0.0001
Borderline deficiency (170-240 pg/dl)	9 (18%)	21 (42%)	
Deficiency (<170 pg/dl)	7 (14%)	11 (22%)	
Severe deficiency (<100 pg/dl)	3 (6%)	7 (14%)	
Total	50	50	

Graph No.1: Bar graph showing vitamin B₁₂ in control and cases

DISCUSSION

A search of literature review, this is the first study reporting hypovitaminosis B₁₂ in PPIs users of long (> 3 years) duration. We found cumulative vitamin B₁₂ deficiency was noted in 38% of control and 78% of cases (P=0.0001). The hypovitaminosis B₁₂ of present study is in agreement with previous studies.⁵⁻⁸ Qorraj-Bytyqi et al¹⁰ reported a study from Kosovo including 200 cases (PPIs) and 50 controls. Serum Fe⁺⁺, ferritin, homocysteine and vitamin B₁₂ were measured at baseline and after 1 year. They¹⁰ reported hypovitaminosis B₁₂ in 2.9% and hypoferrimeia in 3.8% of cases at 1 year of PPIs use. They¹⁰ reported hypovitaminosis B₁₂ in 2.9% and hypoferrimeia in 3.8% of cases at 1 year of PPIs use. The frequency of deficiency of vitamin B₁₂ and serum Fe⁺⁺ is very low but supports our present study's findings. However, the

reason of low frequency of vitamin B₁₂ and serum Fe⁺⁺ is clear that above study evaluated the parameters for 12 month's duration while the present study determined the effects of PPIs use in chronic users of >3 years duration. Most probably this difference is because of short duration of above study. Mindiola et al² conducted study of vitamin B₁₂ levels in chronic users of PPIs of long duration and found statistically significant differences. They found low vitamin B₁₂ levels in those who consumed PPIs for more than 3 years. Our findings are supported by the above study. Another previous study¹¹ reported low vitamin B₁₂ levels in those using PPIs for longer durations. In present study, the frequency and % of normal, borderline deficiency, deficiency and severe deficiency of vitamin B₁₂ in control and cases were noted as 31 (62%) vs. 11 (22%), 9(18%) vs. 21 (42%), 7 (14%) vs. 11 (22%), and 3 (6%) vs. 7 (14%) (P=0.00016). These findings are supported by previous studies.^{2,10-12} A Latin American study¹² reported 40% deficit of vitamin B₁₂ in general population and 20% showed borderline deficit. Heidelbaugh et al¹³ in their review article analyzed the effects of PPIs use and risk of minerals and vitamins deficiencies and clinical evidence in patients with GERD, dyspepsia, erosive esophagitis and acid peptic disease. It was concluded that the people are using PPIs as on-demand and step-down therapy that created financial deficits to the public in addition to the medical problems. They¹³ reported increased risk of minerals (Fe⁺⁺, Ca⁺⁺, Mg⁺⁺and vitamins deficiencies (vitamin C, B₁₂, etc) that may be relatively low in the general population but enough in the elderly and malnourished patients.¹³ A recent study from Lebanon population conducted by Makhoul et al¹⁴ (2018) reported retrospective case-control study of 210 sample of age 18- to older from the Lebanese population. They found that the PPIs use >2 years in Lebanese was associated with hypovitaminosis B₁₂. They further added the female gender and young people showed strong association with PPIs use and hypovitaminosis B₁₂. The findings of above studies are in keeping with present studies. We are also supported by a nested case control study¹⁵ from Kaiser Permanente Northern California (KPNC) that analyzed vitamin B₁₂ in 25956 cases and 184199 controls and comparison showed statistical significant low vitamin B₁₂ levels in long term PPIs cases.¹⁵ The findings are in full agreement with the present study. A case report by Ruscin et al¹⁶ reported severe vitamin B₁₂ deficiency in a 78-year-old woman with symptomatic GERD who ingested the PPIs for 4.5 years. Vitamin B₁₂ was found normal at baseline and severe deficiency was noted after 4.5 years PPIs consumption. A cross sectional study by Den Elzen et al¹⁷ analyzed vitamin B₁₂ in old aged individuals (age \geq 65 years) using PPIs. They found no association vitamin B₁₂ deficit with the long term PPIs use. The findings of above study are in contrast to present and other previous studies.¹⁰⁻¹² Reason could be of different geographical areas, dietary habits, qualitative differences of diet in different communities and research bias because of small sample size and statistical errors. Previous studies¹⁸⁻²⁰ from Pakistan have reported high prevalence of vitamin B₁₂ in young age while in western countries vitamin B₁₂

deficiency is common in elderly²¹, these discrepancies have created difficulties of estimating the true frequency of vitamin B₁₂ in developing countries. The present study has many imperfections; 1st – effect of residual confounding factor of prevalent vitamin B₁₂ cannot be fully eliminated, hence results may vary, 2nd – small sample size is not representative of total study population of area, and findings cannot be generalized. The strengths of present study are; case-control study, prospective study design, age and gender matched controls. Selection of cases by inclusion and exclusion criteria adds to the strength to the findings of present study. With evidence based findings and review of published literature, it is worth to say the hypovitaminosis B₁₂ may be one of the grave health problem that needs to overcome through proper screening.

CONCLUSION

The present concludes the long term use of proton pump inhibitors is associated with hypovitaminosis B₁₂. It is suggested to conduct more studies at national level with large sample size to reach to the bitter fact of causality of hypovitaminosis B₁₂ and Proton pump inhibitors as these are widely used in Pakistan.

Author's Contribution:

Concept & Design of Study: Muhammad Akbar
 Drafting: Abdul Karim Soomro, Fatima Qureshi
 Data Analysis: Farheen Malik, Haji Khan Khoharo, Shoukat Ali Memon
 Revisiting Critically: Muhammad Akbar, Abdul Karim Soomro
 Final Approval of version: Muhammad Akbar

Conflict of Interest: The study has no conflict of interest to declare by any author.

REFERENCES

1. Iwakiri K, Kinoshita Y, Habu Y. Evidence-based clinical practice guidelines for gastroesophageal reflux disease 2015. *J Gastroenterol* 2016;51:751-67.
2. Mindiola AL, Fernandez HM, Arciniegas DR, Regino WO. Vitamin B₁₂ Deficiency Associated with Consumption of Proton Pump Inhibitors. *Rev Colomb Gastroenterol* 2017;32 (3): 197-201.
3. Howden CW. Vitamin B₁₂ levels during prolonged treatment with proton pump inhibitors. *J Clin Gastroenterol* 2000; 30: 29-33.
4. Nizamani GS, Memon IA, Memon A, Khoharo HK. Vitamin B₁₂ Deficiency with Megaloblastic Anemia: An Experience at Tertiary Care Hospital of Sindh. *J Liaquat Uni Med Health Sci* 2014; 13 (01): 13-17.
5. Marcuad SP, Albernaz L, Khazanie PG. Omeprazole therapy causes malabsorption of cyanocobalamin (vitamin B12). *Ann Intern Med* 1994; 120:211-5.
6. Valuck RJ, Ruscin JM. A case-control study on adverse effects: H₂ blocker or proton pump inhibitor use and risk of vitamin B₁₂ deficiency in older adults. *J Clin Epidemiol* 2004;57:422-8.
7. Hirschowitz BI, Worthington J, Mohnen J. Vitamin B₁₂ deficiency in hypersecretors during long-term acid suppression with proton pump inhibitors. *Aliment Pharmacol Ther* 2008;27:1110-21.
8. Dharmarajan TS, Kanagala MR, Murakonda P. Do acid-lowering agents affect vitamin B₁₂ status in older adults? *J Am Med Dir Assoc* 2008; 9:162-7.
9. Ahmad I, Syed A, Naqvi SHA. Proton pump inhibitors use; beware of side-effects. *J Pak Med Assoc* 2016;66(10):1314-18.
10. Qorraj-Bytyqi H, Hoxham R, Sadiku S, Bajraktari IH, Sopjani M, Thaçi K, Thaçi S, Bahtiri E. Proton Pump Inhibitors Intake and Iron and Vitamin B₁₂ Status: A Prospective Comparative Study with a Follow up of 12 Months. *Open Access Maced J Med Sci*. 2018 Mar 15; 6(3):442-6.
11. Lam JR, Schneider JL, Zhao W, et al. Proton pump inhibitor and histamine 2 receptor antagonist use and vitamin B₁₂ deficiency. *JAMA* 2013;310: 2435-42.
12. Allen LH. Folate and vitamin B₁₂ status in the Americas. *Nutr Rev* 2004; 62:S29-33.
13. Heidelbaugh JJ. Proton pump inhibitors and risk of vitamin and mineral deficiency: evidence and clinical implications. *Ther Adv Drug Saf* 2013; 4(3) 125-133.
14. Makhoul E, Waked H. Proton pump inhibitor use and vitamin b12 deficiency in a Lebanese population. *Int J Develop Res* 2018;8(4):20041- 4.
15. Boussery K, Zorg F. Un déficit en vitamine B 12 : associé à la prise d' inhibiteurs de la pompe à protons ou d' antihistaminiques H2? *Question Clinique* 2015;14:16-17.
16. Ruscin JM, Lee R, Li P, Valuck RJ. Vitamin B₁₂ Deficiency Associated with Histamine 2 -Receptor Antagonists and a Proton-Pump Inhibitor: *Ann Pharmacother* 2002;36.
17. Den Elzen WPI, Groeneveld Y, DE Ruijter W. Long-term use of proton pump inhibitors and vitamin B₁₂ status in elderly individuals. *Aliment Pharmacol Ther* 2008; 27(6):491-7.
18. Shaikh S, Memon A, Ata MA, Khoharo HK. Cobalamin deficiency; helicobacter pylori infected patients: a myth or reality. *Professional Med J* 2016; 23(2):176- 81.
19. Jabeen A, Mushtaq S, Raza H, Memon MA. Vitamin B₁₂ deficiency: prevalence and evaluation of a reversible co-morbidity in hypothyroid patients. *Pak J Nucl Med* 2016;6(1):25-31.
20. Siddiqui B, Rabindranath D, Faridi SH, Khan A, Haiyat S, Eswaran R. Megaloblastic anemia: A common but often neglected cause of pyrexia of unknown origin. *J Transl Int Med* 2015;3(2):64-7.
21. Shin JM, Sachs G. Pharmacology of Proton Pump Inhibitors. *Current Gastroenterol Rep* 2008; 10(6): 528- 534.