Original Article

Microbiological Profile and **Susceptibility Pattern of Enteric Organisms**

Estimate Number of Enteric Pathogens in Raw Chicken

of Lahore, Pakistan

in Raw Broiler Chicken Meat from Abattoirs

Nida Javed¹, Saima Pervaiz², Fatima Tuz Zahra³, Ghania Ali⁴ and Ayesha Muazzam⁴

ABSTRACT

Objective: This study aimed to estimate number of enteric pathogens in raw chicken meat including surfaces of breast and cloacal region. Moreover, antibiotics susceptibility pattern of organisms isolated from thigh meat were also observed.

Study Design: A Descriptive, cross-sectional study.

Place and Duration of Study: This study was conducted at the Department of Microbiology, University of Health Sciences (UHS) Lahore. December 2021 to April 2022.

Methods: About 95 raw broiler chicken thigh meat samples from abattoirs of different areas of Lahore were collected. Swabs from chicken breast and cloacal region were also taken to estimate the microbes present on their

Results: The mean Aerobic Plate Count was 4.75+1.18 log CFU/g. Out of 95 chicken samples, thigh meat had E. coli (n= 67), Proteus spp., (n=15), Enterobacter spp., (n=6), Citrobacter spp., (n=6) and S. aureus (n=3). From breast swab, E. coli (n=69), Proteus spp., (n=16), Enterobacter spp., (n=9), Yersinia spp., (n=1), Citrobacter spp., (n=4), S. aureus (n=9) and Klebsiella spp., (n=6) were retrieved. Cloacal swabs revealed E. coli (n=59), Proteus spp., (n=67), Enterobacter spp., (n=5), Yersinia spp., (n=1) and Citrobacter spp., (n=2). All the isolates were resistant to

Conclusion: Various Enterobacteriaceae species especially E. coli are common in broiler chickens at abattoirs. The presence of multi drug resistant strains of these enteric organisms is an important finding of this study.

Key Words: Antibiotics, Cross contamination, E. coli, Enterobacteriaceae, Multidrug resistant bacteria, Poultry meat, Raw Chicken

Citation of article: Javed N, Pervaiz S, Zahra FT, Ali G, Muazzam A. Microbiological Profile and Susceptibility Pattern of Enteric Organisms in Raw Broiler Chicken Meat From Abattoirs of Lahore, Pakistan. Med Forum 2023;34(12):44-48.doi:10.60110/medforum.341211.

INTRODUCTION

Chicken meat is preferred due to its low fat and cholesterol content. This quality makes it a healthy food choice, which is not only readily available but also a rich and cheaper source of proteins¹. The consumption of poultry meat is therefore increasing worldwide. An increase in demand of chicken meat should not compromise its hygiene because contaminated or raw

^{1.} Department of Microbiology, Azra Naheed Medical College, Lahore, Head of Microbiology / University of Health Sciences, Lahore.

Correspondence: Nida Javed, Assistant Professor of Microbiology, Azra Naheed Medical College, Lahore.

Email: nida1javaid@gmail.com

Received: May, 2023 Accepted: September, 2023 Printed: December, 2023

Contact No: 0328 4064436

meat can possibly transmit food-borne pathogens². Food borne diseases are one of the leading causes of mortality and infections, especially in developing countries. Poultry meat is mostly found to harbor various enteric pathogens such as Salmonella, Campylobacter, S. aureus, E. coli and Listeria. Some members of Enterobacteriaceae family e.g. Escherichia coli, Salmonella, Klebsiella and Proteus are known to cause putrefaction of chicken meat and other food products³. The improper use of antibiotics for disease prevention and rapid growth promotion in broiler chickens is the leading source of development of bacterial resistance in them⁴. The intestinal bacteria, thus plays a vital role as vehicle of drug resistance genes which may be transmitted to other clinically important bacteria⁵. An amount of 10g meat sample (thigh) was thoroughly minced. It was diluted in 90ml (w/v) of buffered peptone water to achieve 1:10 dilution. A volume of one ml from meat solution was serially diluted to 1:10 dilution⁶. An amount of 0.1ml or 100µl was taken from TT1, TT3 and TT5 respectively and added to nutrient agar plates. The

² Department of Immunology / Microbiology³, University of Health Sciences, Lahore.

^{4.} Senior Demonstrator, Al- Aleem Medical College, Lahore.

solution was spread evenly with the help of glass L-shaped spreader. The plates were incubated at 35-37°C for 24-48 hours. After incubation, colonies were counted on a colony counter and colony forming unit/gram (CFU/g) was calculated⁷.

METHODS

The study employed a descriptive, go-sectional layout carried out on the University of Health Sciences, Lahore, from December 2021 to April 2022. Convenient sampling become used to gather ninety five raw broiler bird thigh meat samples from various abattoirs in Lahore. Additionally, swabs from bird breast and cloacal location were taken for microbial estimation. The meat samples have been processed by way of dilution in buffered peptone water, observed through serial dilution and plating on nutrient agar. Identification of Salmonella and Campylobacter became accomplished the usage of selective media and biochemical exams. Antimicrobial susceptibility checking out became carried out the usage of the Kirby Bauer Disk Diffusion approach, following CLSI breakpoints. Statistical analysis employed One Way ANOVA.

Data collection: The records series for this examine involved obtaining 95 raw broiler chicken thigh meat samples from numerous abattoirs in Lahore thru convenient sampling. Swabs from the chicken breast and cloacal region have been additionally collected to assess microbial presence. A meticulous procedure blanketed mincing 10g of thigh meat, diluting it in buffered peptone water, and serial dilution for next plating on nutrient agar. The identification and locality of the sampled areas have been duly stated. Furthermore, the take a look at incorporated the identity of Salmonella and Campylobacter via selective media and biochemical assessments. The antimicrobial susceptibility of isolated organisms turned into assessed using the Kirby Bauer Disk Diffusion approach.

Statistical analysis: Data was expressed as mean and standard deviation. Bacterial counts were compared by One Way ANOVA test using SPSS Software 24.0 to determine difference in group means at P value ≤ 0.05 .

RESULTS

According to Table 1, out of 95 raw broiler chicken samples, 39.0% had APC <4 log CFU/g, 22.1 % had >4 to <5 log CFU/g, 26.3 % had >5 to <6 log CFU/g, and 12.6% had >6 log CFU/g. The average APC was 4.751+1.1811 log CFU/g. This demonstrates that most samples met meat hygiene standards. This research detected no Salmonella or Campylobacter. Figure 1 shows that E. coli was recovered from 67 (70.5%) thigh meat samples, whereas Proteus, Enterobacter, Citrobacter, and S. aureus were isolated from 15 (15.8%), 6 (6.3%), 6 (6.3%), and 3 (3.2%) samples.

Table 2 shows chicken flesh, breast, and cloacal swabs' identified enteric microbes. E. coli was identified from 59 (62.1%) cloacal samples, whereas Proteus Spp., Enterobacter, Yersinia spp., and Citrobacter were isolated from 67 (70.5%), 5 (5.3%), 1 (1.0%), and 2 (2.1%) samples E. coli was recovered from 69 (72.6%) of 95 breast swabs, whereas Proteus, Enterobacter, Yersinia, Citrobacter, S. aureus, and Klebsiella were isolated from 16 (16.8%), 9 (9.5%), 1 (1.0%), 4 (4.2%), 9 (9.5%), and 6 (6.3%).

Using ANOVA, significant findings (P < 0.05) were seen for E. coli, Proteus Spp., and Enterobacter spp., whereas Citrobacter and S.aureus exhibited negligible effects (P > 0.05).

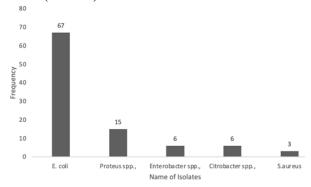


Figure No. 1: Spp., of bacteria isolated from thigh meat (n=95)

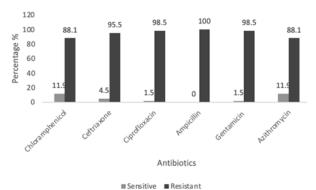


Figure No. 2: Antibiotic susceptibility pattern of E. coli (n= 67)

Table No. 1: Aerobic plate count from chicken thigh meat

Log CFU/g	Number	Percentage%	
<4	37	39.0	
>4 to <5	21	22.1	
>5 to <6	25	26.3	
>6*	12	12.6	
Total	95	100.0	
Mean + SD	4.751 + 1.1811		

^{*&}gt;6 log CFU/g depicts increased chance of spoilage of meat.

Table No. 2: Bacteria isolated from different types of samples

Sampling	No. of	E.	Proteus	Enteroba	Yersinia	Citrobacter	S. aureus	Klebsiella
type	samples	coli	spp.	cter spp.,	spp.,	spp.,		spp.,
Thigh meat	95	67	15	6	0	6	3	0
Cloacal	95	59	67	5	1	2	0	0
swab								
Breast swab	95	69	16	9	1	4	9	6
Total	285	195	98	20	2	12	12	6

Table No.3: Frequency of antibiotic-resistant enteric strains isolated from chicken thigh meat

	Antibiotics resistance %								
Bacterial	Chloramphenicol	Ceftriaxone	Ciprofloxacin	Ampicillin	Gentamicin	Azithromycin			
strains	C30µg	CRO30µg	CIP5µg	AMP10µg	CN10µg	AZM15μg			
E.coli									
(n=67)	59(88.1%)	64(95.5%)	66(98.5%)	67(100%)	66(98.5%)	59(88.1%)			
Proteus spp.,									
(n=15)	9(60.0%)	10(66.7%)	11(73.3%)	15(100%)	10(66.7%)	15(100%)			
Enterobacter									
spp., (n= 6)	6(100%)	6(100%)	6(100%)	6(100%)	6(100%)	6(100%)			
Citrobacter									
spp., (n=6)	5(83.3%)	5(83.3%)	6(100%)	6(100%)	6(100%)	6(100%)			
S.aureus									
(n=3)	2(66.6%)	1(33.3%)	3(100%)	3(100%)	3(100%)	1(33.3%)			

DISCUSSION

(APC) plate count measures Aerobic microbiology. European Union Standards and British meat processors association recommend a raw meat aerobic plate count below 106 CFU/g or cm2. Table 1 aerobic plate count results matched a local investigation that found 9 of 45 chicken samples with APC >6 log CFU Other Karachi and Lahore investigations found higher APC values All of these data emphasise the need to enhance slaughtering techniques and abattoir hygiene^{8,9}. Human flora, slaughtering personnel's hand hygiene, slaughtering table and instrument flora. slaughterhouse temperature and humidity all affect bacterial burden during processing. E. coli was the most common microbe in this investigation. 70% of thigh meat samples had E. coli¹⁰. One local study found 85% E. coli in raw chicken samples from Lahore Another research from Lahore revealed E. coli frequency up to 78% while a Karachi investigation found 9 out of 10 samples positive for both coliforms and faecal coliforms^{11,12}. Butchers' inadequate hygiene during slaughtering and meat processing was also noted in these investigations. E. coli is common in raw chicken meat in Bangladesh and Nepal¹³. The aforementioned research show that E. coli is the best indication of food and water faeces. It may be spread by contaminated hands or water-intensive slaughter methods. Proteus spp. was 15.8% in this research and 18.4% in Nepal¹⁴. In Peshawar Pakistan found 11 Proteus spp. out of 231 isolates, whereas Saudi Arabia found 6 from 75 meat product samples demonstrating stronger hygienic practices¹⁵. This research detected 6.3% Enterobacter spp., comparable to another that found 6.9% Present investigation found 6 (6.3%) Citrobacter spp., which matched 3.4% but greater numbers were recorded in many studies from across the globe, making it a major meat rotting bacterium¹⁶. This investigation found lower counts of S. aureus than a nearby study that found 55% of retail chicken samples contaminated 62% and 66.6% This investigation failed to isolate Salmonella and Campylobacter¹⁷. The explanation may be overuse of antibiotics for broiler chicken development and illness treatment. Rabia and Sidrah found antibacterial activity in 73.3% of 90 chicken meat samples from various parts of Lahore at University of Health Sciences. This shows that substantial doses of chicken flesh antimicrobials inhibited most microorganisms Pakistan, Iran, and Egypt also found various antibiotics in chicken parts¹⁸. Table 3 shows that the prevalent pathogen, E. coli, was 100% ampicillin-resistant and 98.5% ciprofloxacin-resistant. Ciprofloxacin is a powerful antibiotic for gastrointestinal and urinary tract infections. Health officials worry that multi-drugresistant urinary strains of E. coli identified from Lahore may originate from this antibiotic 19. Results were similar shows tetracycline, sulfonamide, and quinolone resistance. A recent research in Turkey found 97% penicillin-resistant E. coli and 94.29 % multidrugresistant²⁰. The sensitivity pattern of Proteus spp. in our investigation matched Compared to this investigation, identified several Citrobacter spp. The extensive use of common antimicrobials as prophylactics and growth promoters in veterinary medicine explains the high frequency of antimicrobial resistance seen in this research²¹. Increased animal exposure to antimicrobials

causes germs to become resistant, which is then passed on to people via a flawed food chain. The rise of resistant microorganisms increases the burden of human illnesses that do not respond to most medications²².

CONCLUSION

Based on the results of this study, majority of chicken meat samples were microbiologically fit for human use. This was further assured by the absence of Salmonella and Campylobacter in these samples. The presence of various Enterobacteriaceae in raw meat can be the potential source of infection through consumption of undercooked meat. There is a chance of crosscontamination of other food products also. One of the critical findings is presence of multi drug resistant strains of these organisms. This poses an imminent threat to the health of the community making it even more difficult to treat the gastrointestinal infections produced by them. It is thus, the need of hour, to not only educate meat handlers at basic level but also emphasize the importance of implying stern laws for the safety of food.

Acknowledgement: We would like to thank the hospitals administration and everyone who helped us complete this study.

Author's Contribution:

Concept & Design of Study: Nida Javed

Drafting: Saima Pervaiz, Fatima

Tuz Zahra

Data Analysis: Ghania Ali, Ayesha

Muazzam

Revisiting Critically: Nida Javed, Saima

Pervaiz

Final Approval of version: Nida Javed

Conflict of Interest: The study has no conflict of interest to declare by any author.

Source of Funding: None

Ethical Approval: No.UHS/REG/18/ERC/2630 dated

18.08.2018

REFERENCES

- 1. Bilgili SF. Poultry meat processing and marketing what does the future hold? Poultry Int 2002;10(41):12-22
- 2. Barroeta AC. Nutritive value of poultry meat: Relationship between vitamin E and PUFA. Worlds Poultry Science J 2007;63(2):277-284.
- Nastasijevic I, Vesković S, Milijašević M. Meat safety: Risk based assurance systems and novel technologies. Scientific J " Meat Technology" 2020;61(2):97-119.
- 4. Fegan N, McAuley CM, Gray JA, Duffy LL, Namvar A, Warriner K. Current trends in zoonoses and foodborne pathogens linked to the

- consumption of meat. In New Aspects of Meat Quality. Woodhead Publishing 2022; Jan 1:717-754.
- Kostoglou D, Simoni M, Vafeiadis G, Kaftantzis NM, Giaouris E. Prevalence of Campylobacter spp., Salmonella spp., and Listeria monocytogenes, and Population Levels of Food Safety Indicator Microorganisms in Retail Raw Chicken Meat and Ready-To-Eat Fresh Leafy Greens Salads Sold in Greece. Foods 2023;12(24):4502.
- 6. Haque MH, Sarker S, Islam MS, Islam MA, Karim MR, Kayesh ME, et al. Sustainable antibiotic-free broiler meat production: Current trends, challenges, and possibilities in a developing country perspective. Biol 2020;9(11):411.
- 7. İçli N, Kesbiç FI. The Comparison of the Microbiological Characteristics of Wet Dough and Dry Powder Tarhana's and Evaluation of Possible Health Risks. Turkish J Agriculture-Food Science Technol 2021;9(12):2333-8.
- 8. Bae YY, Choi YM, Kim MJ, Kim KH, Kim BC, Rhee MS. Application of supercritical carbon dioxide for microorganism reductions in fresh pork. J Food Safety 2011;31:511–517.
- 9. Coşkun MR, Şahin M. 1 Prevalence of neonatal calf diarrhea caused by Escherichia coli and investigation of virulence factors, serotypes, and antibiotic susceptibility. Polish J Veterinary Sciences 2023;26(3):335-41.
- 10. Fatima A, Saleem M, Nawaz S, Khalid L, Riaz S, Sajid I. Prevalence and antibiotics resistance status of Salmonella in raw meat consumed in various areas of Lahore, Pakistan. Scientific Reports 2023;13(1):22205.
- 11. Siddiky NA, Sarker MS, Khan MS, Begum R, Kabir ME, Karim MR, et al. Virulence and antimicrobial resistance profiles of Salmonella enterica serovars isolated from chicken at wet markets in Dhaka, Bangladesh. Microorganisms 2021;9(5):952.
- 12. Asuming-Bediako N, Kunadu AP, Jordan D, Abraham S, Habib I. Prevalence and antimicrobial susceptibility pattern of Campylobacter jejuni in raw retail chicken meat in Metropolitan Accra, Ghana. Int J Food Microbiol 2022;376:109760.
- 13. Ishaq K, Ahmad A, Rafique A, Aslam R, Ali S, Shahid MA, et al. Occurrence and antimicrobial susceptibility of Proteus mirabilis from chicken carcass. Pak Vet J 2022;42:576-9.
- Suman Kumar M, Ramees TP, Dhanze H, Gupta S, Dubal ZB, Kumar A. Occurrence and antimicrobial resistance of Campylobacter isolates from broiler chicken and slaughter house environment in India. Animal Biotechnol 2023;34(2):199-207.
- 15. Popa SA, Morar A, Ban-Cucerzan A, Tîrziu E, Herman V, Sallam KI, et al. Occurrence of Campylobacter spp. and Phenotypic Antimicrobial

- Resistance Profiles of Campylobacter jejuni in Slaughtered Broiler Chickens in North-Western Romania. Antibiotics 2022;11:1713.
- Mohammad WS, Farid RA, Aziz KA. Study on Microbiological Quality of Vender Chicken Livers in Jalalabad City. Health Food Biotechnol 2020;2(3):P-26-32.
- 17. Tagar S, Ahmed N. Assessment of hygiene status of poultry slaughtering facilities and meat handling practices of butchers by using a hygiene assessment tool. J Food Safety Hygiene 2021;7(1):38-51.
- Bulajić N, Miljković-Selimović B, Tambur Z, Kocić B, Kalevski K, Aleksić E. Prevalence of antimicrobial resistance in Campylobacter spp.: A review of the literature. Acta Microbiologica et Immunologica Hungarica 2022;69(1):13-7.
- 19. Aarestrup FM, Wegener HC, Collignon P. Resistance in bacteria of the food chain: epidemiology and control strategies. Expert Rev Anti Infect Ther 2008;6:733–50.

- Metreveli M, Bulia S, Tevzadze L, Tsanava S, Zarske M, Goenaga JC, et al. Comparison of antimicrobial susceptibility profiles of thermotolerant Campylobacter spp. isolated from human and poultry samples in Georgia (Caucasus). Antibiotics 2022;11(10):1419.
- 21. Nweze JA, Gupta S, Akor J, Nwuche CO, Nweze JE, Unah VU. Animal Waste: An Environmentally Sustainable Management Approach. InClimate Changes Mitigation and Sustainable Bioenergy Harvest Through Animal Waste: Sustainable Environmental Implications Animal Waste. Cham: Springer Nature Switzerland 2023;Apr 29:1-33.
- 22. Almansour AM, Alhadlaq MA, Alzahrani KO, Mukhtar LE, Alharbi AL, et al. The Silent Threat: Antimicrobial-Resistant Pathogens in Food-Producing Animals and Their Impact on Public Health. Microorganisms 2023;11(9):2127.