

Safety and Efficacy of Minimally Invasive Percutaneous Nephrolithotomy for Kidney Stones in Infants in Pakistan

Tariq Ahmad¹, Nasrum Minallah² and Fazal e Manan²

Nephrolithotomy
for Kidney
Stones in Infants

ABSTRACT

Objective: To assess the safety and effectiveness of minimally invasive percutaneous nephrolithotomy in infants of age less than 12 months in Pakistan.

Study Design: Analytic study

Place and Duration of Study: This study was conducted at the Pediatric Urology Department at Institute of Kidney Diseases Peshawar from March 2020 to March 2021.

Materials and Methods: Children under the age of 12 months having renal stone of size $\geq 1\text{cm}$ in greatest dimension on CT-KUB were enrolled in this study. Patients with positive urine cultures, elevated serum creatinine, horse shoe kidneys, ectopic kidneys and bleeding diathesis were omitted from this study. All patients underwent mini-PCNL under general anesthesia in prone position.

Results: A total of 33 patients with mean age 9.3 ± 2.05 months were included in this study. The mean stone size, operative time, hospital stay and drop in hemoglobin (Hb) were 11.50 ± 1.37 mm, 52.12 ± 8.23 mins, 2.36 ± 0.74 days and 1.65 ± 0.89 g/dl respectively. We attained stone free status in 84.85% of the patients. Postoperative complications developed in 21.21% of the patients. Only 15.15% patients required retreatment.

Conclusion: We concluded that for renal stones, in the infantile stage group, mini-PCNL is safe and effective treatment for renal stones in infants.

Key Words: Infants, Pediatrics, Percutaneous, mini-PCNL, Urolithiasis

Citation of article: Ahmad T, Minallah N, Manan F. Safety and Efficacy of Minimally Invasive Percutaneous Nephrolithotomy for Kidney Stones in Infants in Pakistan. Med Forum 2021;32(10):151-154.

INTRODUCTION

The prevalence of pediatric urolithiasis in comparison to adult population is low but is steadily increasing¹. The clinical presentation of renal stones in infants is variable because of their incapability to communicate. The main presentations are but not limited to fever, oliguria, hematuria, listlessness or crying and poor appetite². Minimally invasive options for renal stones in infants include extracorporeal shockwave lithotripsy (ESWL), flexible ureteroscopy (URS) and percutaneous nephrolithotomy (PCNL). ESWL is the preferred technique to manage renal stones <2 cm diameter.

¹. Department of Pediatric Urology / Urology and Renal Transplant², Institute of Kidney Diseases, Phase IV, Hayatabad, Peshawar, Khyber Pakhtunkhwa. However, ESWL in infants is performed under general anesthesia (GA) and requires repetitive sessions³.

Correspondence: Dr. Nasrum Minallah, Department of Urology and Renal Transplant Institute of Kidney Diseases, Phase IV, Hayatabad, Peshawar, Khyber Pakhtunkhwa.
Contact No: 03339161193
Email: drnasrumminallah@gmail.com

Received: May, 2021
Accepted: July, 2021
Printed: October, 2021

Furthermore, residual stones after ESWL may lead to recurrence. Pediatric URS has excellent stone free rate (SFR) with minimal intra or post-operative complications⁴. Flexible URS, however, requires LASER, which is not available in our part of the world. Besides, the procedure requires instruments that are disposable and costly, making it difficult to afford. Therefore to treat infantile nephrolithiasis mini-PCNL is suggested. This procedure does not need disposable instruments and can safely be done with pneumatic lithoclast⁵. Nonetheless, PCNL is associated with several complications and requires a steep learning curve especially in infants⁶.

This research study was carried out in the Pediatric Urology Department, Institute of Kidney Diseases (IKD) Peshawar to assess the safety and effectiveness of minimally invasive percutaneous nephrolithotomy in infants of age less than 12 months.

MATERIALS AND METHODS

This study was conducted in the Pediatric Urology Department, Institute of Kidney Diseases Peshawar from March 2020 to March 2021. Approval was obtained from the hospital ethical committee. All children included in this study were of ≤ 12 months age and diagnosed with renal stone $\geq 1\text{cm}$ in size in greatest dimension on CT KUB. Patients with positive urine culture, raised serum creatinine, horse shoe kidneys,

ectopic kidneys and bleeding diathesis were omitted from this study. An informed written consent was taken from the parents of all infants. All children underwent mini-PCNL with 10 Fr pediatric scope under GA in prone position. Renal access was obtained by single supracostal puncture and secured with 12 Fr or 14 Fr Amplatz sheath. Tubeless-PCNL was defined as insertion of DJS only without placing a nephrostomy tube whereas totally tubeless-PCNL was defined as inserting neither DJS nor nephrostomy tube. Plain CT-KUB was performed at one month post-operatively to look for any residual fragments in the ureter or kidney. The patients with no residual fragments at one month after the procedure were categorized as stone free and procedure was labelled as successful. SPSS version 26 was used to analyse the data. Mean \pm SD were computed for quantitative variables whereas percentages and frequency were also computed for categorical variables.

RESULTS

A total of 33 patients, 21 male (63.64 %) and 12 female (36.36 %) were included in this study. The overall mean age and stone size were 9.3 ± 2.05 months and 11.50 ± 1.37 mm respectively. 17(51.52 %) of the patients had stones in the right kidney whereas 16(48.48%) had renal stones in the left. Renal pelvis was the only location of all 33 stone (100%). 25(75.76%) of the patients had Grade 0 hydronephrosis (HDN) and 8(24.24%) had Grade 1 HDN (Table-1). The mean operative time and hospital stay were 52.12 ± 8.23 mins and 2.36 ± 0.74 days respectively. 12(36.36%) patients had totally tubeless-PCNL and 21 (63.64%) required insertion of double J stent (DJS). The mean hemoglobin (Hb) drop observed was 1.65 ± 0.89 g/dl. Overall, stone clearance was attained in 28/33(84.85%) patients. None of the patient had any major intra-operative complication. Patients having post-operative problems were 7(21.21%), including fever in 4(12.12%), transient haematuria in 1(3.03%) and haematuria requiring blood transfusion in 2 (6.06%) of the patients. 5(15.15%) patients required retreatment, including ESWL in 1(3.03%) and URS in 4(12.12%) patients. Stone analysis showed that 25(75.76%) patients had CaOx.CaP stones, 6(18.18%) patients had cystine stones and 2(6.06%) patients had uric acid stones (Table-2).

Table No.1: Patients and Stone Characteristics

Characteristic	Result
n	33
Gender	
Male	21(63.64 %)
Female	12(36.36 %)
Age (months)	9.3 ± 2.05
Stone-Size (mm)	11.50 ± 1.37
Stone Laterality	
Right	17(51.52 %)
Left	16(48.48%)

Table No. 2: Perioperative and Postoperative characteristics of patients

Characteristic	Result
n	33
Operative Time (minutes)	52.12 ± 8.23
Hospital Stay (days)	2.36 ± 0.74
Exit Strategy	
Totally-Tubeless	12(36.36%)
Tubeless	21(63.64%)
Drop in Haemoglobin (g/dl)	1.65 ± 0.89
Stone Free Rate	28(84.85%)
Re-treatment Rate	5(15.15%)
ESWL	1(3.03%)
URS	4(12.12%)
Complications	7(21.21%)
Intraoperative Complications	None
Postoperative Complications	
Clavien Grade I	
Postop Fever	4(12.12%)
Transient Hematuria	1(3.03%)
Clavien Grade II	
Hematuria & Blood Transfusion	2 (6.06%)
Clavien Grade III	-
Clavien Grade IV	-
Stone Composition	
CaOx.CaP	25(75.76%)
Uric acid	2(6.06%)
Cystine	6(18.18%)
Struvite	-
Unknown	-

DISCUSSION

The procedure for infant's urinary tract stones is quite complicated. This is because of many factors such as anatomic abnormalities, the relatively smaller kidney, and developing parenchyma⁷. Consequently, the chance of stone recurrence in infants is more than that of in adults. It is critical to offer minimally invasive procedures in the pediatric age group. The less invasive approaches that are currently available for renal stones in pediatric patients include ESWL, PCNL, and flexible URS alone, or in combination⁸. ESWL is the recommended approach for paediatric renal stones. However, in addition to kidney damage, it may result in high retreatment rates due to residual stones⁹. Some studies show that RIRS could be a promising procedure while treating renal stones in infants¹⁰. However, in such cases the pelvicalyceal anatomy and narrow diameter of ureter may cause complications. These include ureteral injury, avulsion, perforation, ureteral stricture and pyelonephritis¹¹. Since anaesthesia is a prerequisite for all of the less invasive procedures in infants, thus a procedure should be selected which gives high success rate as monotherapy in infants. PCNL has become the preferable treatment option in children who require surgery for the kidney stone

disease. In addition, PCNL is recommended for those with a large stone burden, cysteine stones and residual fragments in case of ESWL failure⁸. However, percutaneous treatment of renal stones in infant remains a difficult task for urologist. Many studies have suggested the effectiveness as well as the safety of PCNL in preschool children (less than three years). On the other hand few studies have reported the efficacy and safety of this procedure for patients less than 12 months of age^{12,13}. The PCNL procedure in children has been reported to have stone clearance rates of 80 to 100%¹⁴.

In our view, the 80 % of stone clearance rate for PCNL as monotherapy in infants is acceptable. In this study, the stone clearance rate obtained was 84.85 %. This rate is higher than that reported by Dağgülü and Baydilli et al, which was 80% and 80.6% respectively^{3,15}. Our stone clearance rate is comparable to Dede et al, which was 83.3 %⁷. In contrast, Jones et al, reported 97.1 % stone free rate, much higher than our study's observation¹⁶. To the best of our knowledge, this is, so far, the largest study which investigates the efficacy and safety of mini PCNL in infants under 12 months of age. Therefore, 84.85 % stone clearance rate with mini-PCNL monotherapy in infants is a successful procedure.

Renal access can be obtained through any of the upper, middle or lower calices, each having good efficacy to clear the stones^{17,18,19}. In our study, supracostal puncture through upper pole by bull's eye technique was performed in all patients. The author has good experience with this puncture technique.

The mean operative time in the current study was 52.12 ± 8.23 minutes which is shorter than that reported by Pelit et al and Nadeem et al^{12,13}. Our operative time is comparable to Dede et al⁷. We report, in our study, a mean hospital stay of 2.36 ± 0.74 days which is comparable to that reported by Dede et al.⁷ and better than that reported by Pelit et al.¹² Tubeless or totally tubeless-PCNL method is associated with short hospital stay and reduced requirement for analgesia²⁰. We did totally tubeless-PCNL in 12(36.36%) and tubeless-PCNL in 21(63.64%) patients. In the current study auxiliary procedures were needed in 5(15.15%) patients including ESWL in 1(3.03%) patient for residual renal stones and URS in 4 (12.12%) patients for migrated stone fragments into the ureter. Patients were stone free after performing these procedures under GA. Our re-treatment rate is comparable to that reported by Pelit et al.¹², however it is higher in comparison to that reported by Nadeem et al.¹³

In this study no major intra-operative complication was observed. 7 (21.21 %) of the patients developed minor post-operative complications (Clavien grade I and II). 4 (12.12%) patients developed post-operative fever who responded well to broad spectrum intravenous antibiotics. 3 (9.09 %) patients had postoperatively

hematuria, two (6.06%) needed blood transfusion. Hematuria settled spontaneously without the need for angiembolization. The mean hemoglobin drop was 1.65 ± 0.89 mg/dL. Jones et al. stated a complication rate of 12.5 % for mini-PCNL, all Clavien grade I. Their complication rate is better than our study¹⁴.

Bleeding is very critical factor because it affects both a patient's mortality and stone clearance rate. Keeping in mind small sized kidneys and compact collecting system in infants, we used 12 Fr and 14 Fr access sheath in order to minimize bleeding and renal trauma. Tracts of smaller size are not only effective in treating renal stones but also have the advantages of less blood loss, short hospital stay, reduced use of postoperative analgesia as well as overall reduced complication rates in comparison to standard PCNL²¹. Hence in children under age of 12 months during PCNL procedure small sized tracts and pediatric instruments should be used.

The PCNL procedure may result in hypothermia which in turn is due to the duration of anesthesia and the use of irrigation fluids during surgery²². However we did not encounter any such event in the current study. The reason was that during the perioperative periods, the room temperature was well adjusted and irrigation fluids were warmed to body temperature. The high pressure within pelvicalyceal system can result in extravasation of urine into the perirenal space or the abdominal cavity causing urinary ascites. During the course of this study, none of the patient reported this complication.

Even it has been more than forty years to the story of its development, PCNL still remains a bit difficult procedure to learn. It is an effective procedure for kidney stone removal. Nevertheless the complication rate is higher than other endoscopic procedures that are being followed for managing stones particularly in less experienced hands. In order to sustain it as a safe and effective procedure for the patients there is a strong need to improve the training for PCNL. For the procedure to be successful, urologists need to perform a handful of PCNLs to gain the required expertise and skills.

The limitations of our study may include small sample size and recruitment of patients from single institute. Another limitation is the need of GA for auxiliary procedure in this group of population.

CONCLUSION

Mini PCNL is a safe and effective treatment for managing renal stones in infants. It leads to higher stone clearance rates, lesser complications and shorter hospital stays.

Author's Contribution:

Concept & Design of Study: Tariq Ahmad
 Drafting: Nasrum Minallah,
 Fazal e Manan

Data Analysis: Nasrum Minallah, Fazal e Manan
 Revisiting Critically: Tariq Ahmad, Nasrum Minallah
 Final Approval of version: Tariq Ahmad

Conflict of Interest: The study has no conflict of interest to declare by any author.

REFERENCES

1. Scoffone CM, Cracco CM. Pediatric calculi: cause, prevention and medical management. *Curr Opin Urol* 2018;28(5):428-432.
2. Li J, Xiao J, Han T, Tian Y, Wang W, Du Y. Flexible ureteroscopic lithotripsy for the treatment of upper urinary tract calculi in infants. *Exp Biol Med (Maywood)* 2017;242(2):153-159.
3. Dağgülü M, Sancaktutar AA, Dede O, Utanç M, Bodakçı MN, Penbegül N, et al. Minimally invasive percutaneous nephrolithotomy: an effective treatment for kidney stones in infants under 1 year of age. a single-center experience. *Urolithiasis* 2015;43(6):507-12.
4. Jones P, Rob S, Griffin S, Somani BK. Outcomes of ureteroscopy (URS) for stone disease in the paediatric population: results of over 100 URS procedures from a UK tertiary centre. *World J Urol* 2020;38(1):213-218.
5. Kallidonis P, Tsaturyan A, Lattarulo M, Liatsikos E. Minimally invasive percutaneous nephrolithotomy (PCNL): techniques and outcomes. *Turk J Urol* 2020;46(Supp. 1):S58-S63.
6. Chaurasia A. Percutaneous nephrolithotomy: challenges for a novice urologist. *Minim Invasive Surg* 2020;5053714.
7. Dede O, Sancaktutar AA, Baş O, Dağgülü M, Utanç M, Penbegül N et al. Micro-percutaneous nephrolithotomy in infants: a single-center experience. *Urolithiasis* 2016;44(2):173-7.
8. Tekgül S, Stein R, Bogaert G, Nijman RJM, Quaedackers J, 't Hoen L, et al. European association of urology and european society for paediatric urology guidelines on paediatric urinary stone disease. *Eur Urol Focus* 2021;S2405-4569(21)00158-9.
9. Alsagheer G, Abdel-Kader MS, Hasan AM, Mahmoud O, Mohamed O, Fathi A, et al. Extracorporeal shock wave lithotripsy (ESWL) monotherapy in children: predictors of successful outcome. *J Pediatr Urol* 2017;13(5):515.e1-515.e5.
10. Chandramohan V, Siddalingaswamy PM, Ramakrishna P, Soundarya G, Manas B, Hemnath A. Retrograde intrarenal surgery for renal stones in children <5 years of age. *Ind J Urol* 2021;37(1): 48-53.
11. Baş O, Tuygun C, Dede O, Sarı S, Çakıcı MC, Öztürk U, et al. Factors affecting complication rates of retrograde flexible ureterorenoscopy: analysis of 1571 procedures-a single-center experience. *World J Urol* 2017;35(5):819-826.
12. Pelit ES, Kati B, Çanakci C, Sağır S, Çiftçi H. Outcomes of miniaturized percutaneous nephrolithotomy in infants: single centre experience. *Int Braz J Urol* 2017;43(5):932-938.
13. Iqbal N, Hasan A, Siddiqui FS, Iftikhar F, Siddiqui FS, Ilyas SM, et al. Outcome of percutaneous nephrolithotomy in preschool and school-age children-single center experience. *J Ayub Med Coll Abbottabad* 2019;31(3):391-396.
14. Jones P, Bennett G, Aboumarzouk OM, Griffin S, Somani BK. Role of minimally invasive percutaneous nephrolithotomy techniques-micro and ultra-mini pcnl (<15f) in the pediatric population: a systematic review. *J Endourol* 2017;31(9):816-824.
15. Baydilli N, Tosun H, Akinsal EC, Gölbaşı A, Yel S, Demirci D. Effectiveness and complications of mini-percutaneous nephrolithotomy in children: one center experience with 232 kidney units. *Turk J Urol* 2019;46(1):69-75.
16. Jones P, Mishra D, Agrawal M, Griffin S, Somani BK. Outcomes of ureteroscopy vs mini-percutaneous nephrolithotomy for pediatric upper urinary tract calculi: comparative nonrandomized outcomes from two tertiary endourology referral centers. *J Endourol* 2020;34(7):735-738.
17. Khadgi S, El-Nahas AR, Darrad M, Al-Terk A. Safety and efficacy of a single middle calyx access (MCA) in mini-PCNL. *Urolithiasis* 2020;48(6): 541-546.
18. Blum KA, Parkhomenko E, Thai J, Tran T, Gupta M. A contemporary lower pole approach for complete staghorn calculi: outcomes and efficacy. *World J Urol* 2018;36(9):1461-1467.
19. Sahan A, Cubuk A, Ozkaptan O, Ertaş K, Canakci C, Eryildirim B, et al. Safety of upper pole puncture in percutaneous nephrolithotomy with the guidance of ultrasonography versus fluoroscopy: a comparative study. *Urol Int* 2020;104(9-10): 769-774.
20. Gupta S, Maurya AK, Pal DK. Observational prospective study for surgical outcome and anesthetic feasibility of tubeless and totally tubeless supine PCNL: a single centre initial experience. *Turk J Urol* 2018;45(2):146-149.
21. Heinze A, Gozen AS, Rassweiler J. Tract sizes in percutaneous nephrolithotomy: does miniaturization improve outcome? *Curr Opin Urol* 2019;29(2):118-123.
22. Hosseini SR, Mohseni MG, Aghamir SMK, Rezaei H. Effect of irrigation solution temperature on complication of percutaneous nephrolithotomy: a randomized clinical trial. *Urol J* 2019;16(6): 525-529.