Original Article

Evaluation of Serum Lipid Profile During The Trimesters of Pregnancy

Lipid Profile during Pregnancy

1. Ashok Kumar 2. Saira Baloch 3. Rukhsar Ali Shahani 4. Lata

1. Asstt. Prof. of Pathology, Isra University, Hyderabad 2. Asstt. Prof., MRC, LUMHS, Jamshoro 3. Assoc. Prof. of Community Medicine, Isra University, Hyderabad 4. Information Technology, Isra University, Hyderabad

ABSTRACT

Background: During pregnancy, lipid metabolism is remarkably increased due to hormonal changes, which lead to various changes in serum lipid levels. Very high levels of lipids can have adverse effects on the maternal and foetal

Objective: To analyze serum total cholesterol (TC), triglycerides (TGs), low density lipoprotein (LDL) and high density lipoprotein (HDL) in pregnant women during all trimesters.

Study Design: Retrospective (hospital record based) study

Place and Duration of Study: This study was carried out in Gynaecology and Obstetrics ward at Liaquat University Hospital, Jamshoro and Hyderabad from March 2011 to February 2012.

Materials and Methods: 5ml blood sample was taken & analyzed for lipid profile using Hitachi 902 chemistry autoanalyzer. The data was analyzed by using SPSS 16.

Results: The results showed that all these lipid parameters were raised during the all trimesters of pregnancy in comparison to the control subjects, except that the LDL level was almost equal to the control subjects during the 1st trimester. Additionally, comparison showed that Total Cholesterol, Triglycerides and LDL in the 2nd and 3rd trimesters were significantly higher than in the 1st trimester. Conclusion: Serum lipids are significantly increased during the all trimesters of pregnancy. As very high levels of lipids may increase the risk of development of various pregnancy complications for the mother and the developing foetus, lipid profile should be part of routine investigation during pregnancy.

Key Word: Pregnancy, Trimesters, Triglycerides, Cholesterol.

INTRODUCTION

During pregnancy, various changes occur in the metabolic state to meet the nutrient requirements of the developing foetus, which result in excessive fat accumulation and hyperlipidaemia in the pregnant woman¹⁻⁴. During the 1st and early 2nd trimesters, increased insulin level causes increased fat deposition and storage in the adipose tissues. These effects lead to increased maternal weight^{4,5}. Increased insulin level upregulates the placental proteins, which transport lipids to the foetus for its growth⁶. During the late 2nd and the 3rd trimesters, there occurs increased lipolysis insulin resistance, which hyperlipidaemia^{7,8}. Babies born to obese mothers are often overweight and are at increased risk for developing obesity and metabolic syndrome in later life^{9,10}. It is well known that maternal diabetes can lead to the birth of overweight baby, but it has been suggested that the maternal obesity appears to be more significant to cause the birth of an overweight baby¹¹. It has also been demonstrated that maternal prepregnancy increased body weight and hyperlipidaemia have significant effects, which cause excessive foetal growth when the woman becomes pregnant 12,13,14 On the other hand, increased maternal cholesterol and triglycerides

increase the risk of cardiovascular complications, preeclampsia and preterm labor¹⁵. Additionally, increased levels of maternal lipids during pregnancy can also result in the development of atherosclerosis in the baby in later life^{16,17}. Hence, lipid levels are very important parameters to be investigated during various trimesters to control the complications for the better health of the pregnant woman and her foetus. This study investigated serum Lipid profile during all three trimesters of pregnancy to know its importance which could help to avoid various pregnancy complications.

MATERIALS AND METHODS

One hundred pregnant women and fifty non pregnant women (as a control group) between the age of 20 to 40 years were included in the study. The test subjects were selected among those pregnant women, admitted at Gynaecology and Obstetrics ward at Liaquat University Hospital, Jamshoro and Hyderabad during the period from March 2011 to February 2012. The subjects who had the history of diabetes mellitus, hypertension or any other systemic illness were excluded from the study

RESULTS

The results are summarised in the table 1 and figure 1.

Table No.1: Serum Cholesterol, Triglycerides, HDL and LDL levels (Mean \pm S.D in mg/dl) of pregnant women during 1^{st} , 2^{nd} and 3^{rd} trimesters and in controls.

Variables	Controls	1 st Trimester	2 nd Trimester	3 rd Trimester
Triglycerides	102.9±13.1	160.9±21.1	211.5±34.5	209.1±24.3
Cholesterol	126.1±12.3	152.1± 10.9	181.2±18.4	201.6±7.1
LDL	84.7±12.6	84.4±18.9	101.5±14.2	142.2±6.4
HDL	38.3±4.9	43.6±2.1	42.4±1.4	45.9±2.8

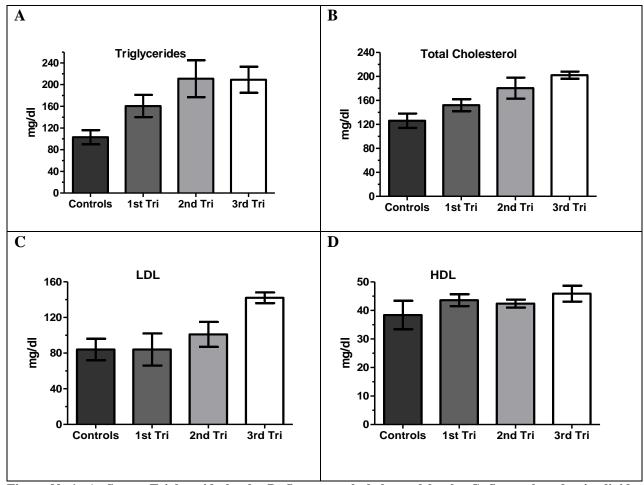


Figure No.1: A. Serum Triglyceride levels; B. Serum total cholesterol levels; C. Serum low density lipid (LDL) levels; D. Serum high density lipids (HDL) levels. Tri: Trimester.

DISCUSSION

In the presented study, we found the increased levels of all basic parameters of lipid profile, i.e., serum TGs, cholesterol, LDL and HDL throughout all the three trimesters of pregnancy in comparison to the control subjects, with the exception of LDL which was almost equal to the control subjects during only the first trimester of pregnancy. Our results correlate with the findings of a group, which showed the increased levels of cholesterol and LDL throughout the pregnancy^{18,19}. For TGs and cholesterol it was shown that they increase with the increase in gestation^{20,21}. High levels of TGs and LDL have already been shown during the first trimester of pregnancy²². Our results show slightly

more increase in TGs during second trimester in some pregnant women. Multiple studies have been conducted on lipid profile levels during the initial and last trimesters of pregnancy globally which have shown a general increase. In the current study, we investigated the lipid profile during all three trimesters with the interesting findings of overall increased levels of all the parameters, i.e., TGs, cholesterol, LDL and HDL, which indicates a profound effect of lipid metabolic changes during the pregnancy. Increased levels of TGs and cholesterol in the mother have been shown to be important for the good growth and development of the foetus²³. Cholesterol has been shown to be essential for the development of embryonic / foetal brain, the steroid hormones and the bile acids. Hence, maternal lipids are

transported through placenta in to the foetus for organogenesis and nourishment of the foetus^{24,25}. On the other hand, very high levels of maternal cholesterol can cause adverse effects not only on the pregnant woman, but also leads to pathological changes in the foetal aorta, leading to development of atherosclerosis in later life^{16,17}. High level of TGs in a pregnant woman has been shown to increase the risk of cardiovascular complications, preeclampsia and preterm labor¹⁵. We also found high levels of HDL during all the trimesters of pregnancy, which is a good cholesterol for the health. This finding indicates that during the pregnancy, the body has a highly controlled system to cope with the high levels of non healthy lipids, i.e., TGs, total cholesterol and LDL by raising the HDL level. Chen. H et.al. showed that Leucine amino acid has good impact on lipid and glucose metabolism in the offspring from obese mice²⁶. Therefore, protein diet, rich in Leucine amino acid could be good for the health in pregnancy.

CONCLUSION

Our results show that serum total cholesterol, triglycerides, LDL and HDL levels are moderately raised during all the three trimesters of pregnancy. To avoid the resulting complications, such as, high blood pressure and the development of pre-eclampsia in a pregnant woman and the adverse effects on the foetus, we recommend that lipid panel be part of routine investigation during pregnancy.

REFERENCES

- 1. Herrera E, Ortega-Senovilla H. Disturbances in lipid metabolism in diabetic pregnancy Are these the cause of the problem? Best Practice & Res Clin Endocrinol & Metabol 2010;24(4):515-25.
- 2. Catalano PM, Ehrenberg HM. The short- and long-term implications of maternal obesity on the mother and her offspring. BJOG. An Int J Obst & Gynae 2006;113(10):1126-33.
- 3. Kim SY, Dietz PM, England L, Morrow B, Callaghan WM. Trends in pre-pregnancy obesity in nine states, 1993-2003. Obesity (Silver Spring). 2007;15(4):986-93.
- 4. Lain KY, Catalano PM. Metabolic changes in pregnancy. Clin Obst and Gynecol 2007;50(4): 938-48.
- Butte NF, Ellis KJ, Wong WW, Hopkinson JM, Smith EO. Composition of gestational weight gain impacts maternal fat retention and infant birth weight. Am J Obst and Gynecol 2003;189(5): 1423-32.
- 6. Magnusson-Olsson AL, Hamark B, Ericsson A, Wennergren M, Jansson T, Powell TL. Gestational and hormonal regulation of human placental lipoprotein lipase. J Lipid Res 2006;47(11): 2551-61.

- Coppack SW, Jensen MD, Miles JM. In vivo regulation of lipolysis in humans. J Lipid Res 1994;35(2):177-93.
- 8. Herrera E. Metabolic adaptations in pregnancy and their implications for the availability of substrates to the fetus. Europ J Clin Nutri 2000;54 Suppl 1:S47-51.
- 9. Danielzik S, Langnase K, Mast M, Spethmann C, Muller MJ. Impact of parental BMI on the manifestation of overweight 5-7 year old children. Europ J Nutri 2002;41(3):132-8.
- Catalano PM, Farrell K, Thomas A, Huston-Presley L, Mencin P, de Mouzon SH, et al. Perinatal risk factors for childhood obesity and metabolic dysregulation. The Am J Clin Nutrition 2009;90(5):1303-13.
- 11. Ismail-Beigi F, Catalano PM, Hanson RW. Metabolic programming: fetal origins of obesity and metabolic syndrome in the adult. Am J Physiol Endocrinol and Metabolism 2006;291(3):E439-40.
- 12. Kelishadi R, Badiee Z, Adeli K. Cord blood lipid profile and associated factors: baseline data of a birth cohort study. Paediatric and Perinatal Epidemiol 2007;21(6):518-24.
- 13. Kitajima M, Oka S, Yasuhi I, Fukuda M, Rii Y, Ishimaru T. Maternal serum triglyceride at 24--32 weeks' gestation and newborn weight in nondiabetic women with positive diabetic screens. Obst and Gynecol 2001;97(5 Pt 1):776-80.
- 14. Sewell MF, Huston-Presley L, Super DM, Catalano P. Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am J Obstet and Gynecol 2006;195(4):1100-3.
- 15. Ghio A, Bertolotto A, Resi V, Volpe L, Di Cianni G. Triglyceride metabolism in pregnancy. Advances in Clinical Chemistry 2011;55:133-53.
- 16. Napoli C, D'Armiento FP, Corso G, Ambrosio G, Palumbo G, Zuliani P, et al. Occurrence of the same peroxidative compounds in low density lipoprotein and in atherosclerotic lesions from a homozygous familial hypercholesterolemic patient: a case report. Int J Cardiol 1997;62(1):77-85.
- 17. Napoli C, Witztum JL, Calara F, de Nigris F, Palinski W. Maternal hypercholesterolemia enhances atherogenesis in normocholesterolemic rabbits, which is inhibited by antioxidant or lipid-lowering intervention during pregnancy: an experimental model of atherogenic mechanisms in human fetuses. Circulation Res 2000;87(10): 946-52.
- 18. Bartels A, Egan N, Broadhurst DI, Khashan AS, Joyce C, Stapleton M, et al. Maternal serum cholesterol levels are elevated from the 1st trimester of pregnancy: a cross-sectional study. Journal of obstetrics and gynaecology. The J of the Institute of Obstet and Gynaecol 2012;32(8): 747-52.

- 19. Mankuta D, Elami-Suzin M, Elhayani A, Vinker S. Lipid profile in consecutive pregnancies. Lipids in Health and Disease 2010;9:58.
- Alvarez JJ, Montelongo A, Iglesias A, Lasuncion MA, Herrera E. Longitudinal study on lipoprotein profile, high density lipoprotein subclass, and postheparin lipases during gestation in women. J Lipid Res 1996;37(2):299-308.
- 21. Sitadevi C, Patrudu MB, Kumar YM, Raju GR, Suryaprabha K. Longitudinal study of serum lipids and lipoproteins in normal pregnancy and puerperium. Tropical and Geographical Med 1981;33(3):219-23.
- 22. Vrijkotte TG, Algera SJ, Brouwer IA, van Eijsden M, Twickler MB. Maternal triglyceride levels during early pregnancy are associated with birth weight and postnatal growth. The J of Pediatrics 2011;159(5):736-42.
- 23. Kulkarni SR, Kumaran K, Rao SR, Chougule SD, Deokar TM, Bhalerao AJ, et al. Maternal lipids are as important as glucose for fetal growth: findings

- from the pune maternal nutrition study. Diabetes care 2013;36(9):2706-13.
- 24. Kanungo S, Soares N, He M, Steiner RD. Sterol metabolism disorders and neurodevelopment-an update. Developmental Disabilities Res Reviews 2013;17(3):197-210.
- 25. Woollett LA. Maternal cholesterol in fetal development: transport of cholesterol from the maternal to the fetal circulation. The Am J of Clin Nutrition 2005;82(6):1155-61.
- 26. 26. Chen H, Simar D, Ting JH, Erkelens JR, Morris MJ. Leucine improves glucose and lipid status in offspring from obese dams, dependent on diet type, but not caloric intake. J Neuroendocrinol 2012;24(10):1356-64.

Address for Corresponding Author: Dr. Ashok Kumar,

Asstt. Prof. of Pathology, Isra University, Hyderabad