Original Article

Bronchoalveolar lavage fluid

COPD

(BALF) differential leucocyte count in Patients with Chronic Obstructive Pulmonary Diseases

1. Muhammad Noman Rashid 2. Muhammad Asif Memon 3. Muhammad Owais Ismail 4. Beenish Noman

Senior lecturer, Dept. of Physiology, Ziauddin University Karach 2. Assoc. Prof. of Physiology, Ziauddin University Karachi 3. Assoc. Prof. of Pharmacology, Ziauddin University Karachi

 Registrar, Dept. of Pharmacology, Agha Khan University, Karachi

ABSTRACT

Objective: The aim of this study is to determine Bronchoalveolar lavage fluid (BALF) differential leukocyte count (DLC) in patients suffering from chronic obstructive pulmonary disease (COPD) and to identify the predominant cell type in our set of population.

Study Design: It is a cross sectional study.

Place and Duration of Study: This study was conducted at a Tertiary Care Hospital in Karachi, Pakistan from March 2012 till October 2012.

Material and Methods: The study comprises of 140 patients with COPD with no treatment or poor compliance to treatment and no history of any interventional procedures. All patients have undergone pulmonary function tests (PFTs) to differentiate obstructive pattern disease from restrictive. Fiber optic bronchoscopy was also done, after which 10 cc of BALF was collected and run for DLC.

Results: Patients were divided in two groups A and B according to gender, and each group was further divided in to two subgroups on the basis of age i.e. above 40 years and below 40 years. All patients have higher percentage of lymphocytes as compared to polymorphs.

Conclusion: A higher concentration of lymphocytes as compared to polymorphs in COPD patients is considered to be an uncommon in Pakistan as per literature survey is concerned, because very less work is done on BALF analysis. Our study suggests that percentage of lymphocytes in patients suffering from COPD is quite high and cases are not restricted to classical acute pulmonary infections.

Key Words: Bronchoalveolar lavage fluid, Chronic Obstructive Pulmonary Diseases, Pulmonary function tests, Polymorph nuclear cells, Lymphocytes

INTRODUCTION

Chronic Obstructive Pulmonary Disease (COPD) has been the dominant focus of airways research interest, at least until recent times 1. A multitude of studies have examined its tapestry of airway inflammation and remodeling². Sophisticated theories have resulted, encompassing environmental exposures, epithelial epithelial-mesenchymal repair, and signaling². Therapeutic successes have followed, encouraging more interest and further investment. COPD is generally considered a self-inflicted condition that results in the majority of cases due to chronic smoking and the only effective treatment to date is long term oxygen therapy and bronchodilator drugs as an adjuvant therapy³. Neutrophils, macrophages, and CD8+ T lymphocytes are known and predictable responders to a sustained noxious insult⁴. However, in recent years something of a renaissance has occurred. COPD inflammation research has burgeoned, a rise in lymphocytes cellular concentration in majority of cases suffering from COPD has been reported by some recent studies⁵.

Animal model studies and in vitro experiments have explored the roles of specific inflammatory cells in COPD, while bronchoscopy, sputum induction and lung resection studies have described airways inflammation in vivo. All have helped to confirm dominant positions in the inflammatory hierarchy for lymphocytes. Other inflammatory cells such as neutrophils, mast cells, eosinophils and natural killer cells have been credited with less importance^{5,6}.

The pathogenesis of smoke-induced COPD has been evaluated in a number of studies showing the accumulation of inflammatory cells in patients airways, predominantly lymphocytes in samples (sputum, bronchial and bronchoalveolar lavage) representative of intraluminal inflammation and mainly lymphocytes and macrophages in tissue specimens⁶. While the reason(s) for this presentation is still not completely clear; subsequently these studies have opened the field to new questions^{6,7}. Since the relevance of airway inflammation in COPD has been demonstrated, the next step is the characterization of the different features of air-way inflammation, such as the nature of chemotactic signal(s) and the contribution of the various cell types

causing airway inflammation through the release of specific inflammatory mediators⁷.

In recent years, number of studies related to pulmonary disorders has used interventional techniques which were proved to be a successful method in getting the true sample of differential cell count from effected tissue. There are various interventional techniques which are being used e.g. sputum induction, bronchial and bronchoalveolar lavage but the most accredited method is bronchoalveolar lavage^{8,9}.

Bronchoalveolar lavage (BAL) is commonly and frequently performed as one of the first line procedures for diagnosing pulmonary lesions and infiltrates etc. BAL entails advancing a fiber optic bronchoscope distally into a subsegment bronchus, followed by instillation of saline, which is retrieved along with cellular debris. Pneumothorax, hemothorax, or exacerbations of respiratory failure may occur rarely due to BAL⁹.

Extensive Literature Survey revealed that many interventional studies have been conducted to analyze differential leukocyte counts in various pulmonary diseases via BALF in recent years but no such type of interventional study has been done in Pakistani population¹⁰. In this regard, this study was designed in Karachi, Pakistan to target COPD patient's population of nonatopic current smokers and tobacco users, with the aim of investigating the cellular characteristics of bronchoalveolar lavage fluid in these patients.

MATERIALS AND METHODS

The study was conducted in Karachi, the largest city of Pakistan with a population of approximately 23.5 million [11] belonging to different ethnicities. It is a cross sectional study conducted between March 2012 to October 2012 in which 140 patients were recruited with history of chronic obstructive pulmonary diseases either with no treatment or poor compliance to treatment and with no history of any interventional procedures.

A written informed consent and a detailed medical and surgical history were taken from all patients. Pulmonary function tests (FEV1, FVC, and FEVI/FVC) were performed to diagnose obstructive lung disease.

All patients underwent fiber optic bronchoscopy in which 10 cc of bronchoalveolar lavage fluid was collected. All bronchoscopies were conducted by pulmonologist at tertiary care hospital and BALF differential leukocyte count was performed in Ziauddin University Hospital laboratory.

BAL was performed using fiber optic bronchoscope. The patients were premedicated with atropine, and given local anesthesia (tetracaine 0.5%) to relax the larynx and bronchial tree.BAL was performed by standardized washing of the middle lobe four times with 50-mL aliquots of sterile saline (0.9%NaCl) at 37°C.Recovered BALF was kept on ice in a siliconized specimen trap, and was separated from cellular

components by centrifugation (5 min, at 350 x g). Supernatants were directly stored at -70°C after an additional centrifugation step (10 min, at 1,000 x g). Cells were washed twice, counted, and suspended in minimal essential medium (MEM; Gib-co, Grand Island, NY) supplemented with 1% bovine serum albumin (BSA; OrganonTeknika, Boxtel, the Netherlands). Preparations of cell suspensions were made in a cytocentrifuge (Shandon, Runcorn, UK). Cytospin slides of BALF cells were stained with May-Grünwald-Giemsa (MGG; Merck, Darmstadt, Germany) for cell differentiation.

A 3cc sample of blood was taken to estimate erythrocyte sedimentation rate (ESR) by westergren method as per protocol, to identify active inflammatory status.

RESULTS

All subjects (n=140) were divided in two equal groups according to gender. Group A and Group B and each group were sub divided into two equal groups on the basis of age i.e. above 40 years and below 40 years. All patients were belonging to low socio economic status. Males were mostly laborers in leather or hosiery factories with known addictions of smoking and gutka. All gave the history of on and off upper and lower respiratory tract infections that was treated with empirical antibiotics, bronchodilator drugs and steroid therapies without any proper investigations (Table 1). All females were house wives using coal and kerosene stoves with similar past medical history as males. 34 females showed addiction towards huqa, in age group above 40 years. 36 females of age group less than 40 years showed addiction to gutka (Table 1).

All patients BALF were checked for differential leucocyte count as shown in Table 2. Ingroup A, above 40 years age subgroup showed an average white blood cell (WBC) count of 9.9 x 10⁹/L, with 35% polymorphonuclear cells and 65% Lymphocytes. Erythrocyte sedimentation rate was 60. Age group below 40 years, showed an average WBC count of 10.7 x 10⁹/L, with 22% polymorphonuclear cells and 78% Lymphocytes. Erythrocyte sedimentation rate was 73 in this subgroup. In group B, above 40 years showed an average WBC count of 11.0 x 10⁹/L with 30% and 70% polymorphonuclear cells and Lymphocytes respectively. Erythrocyte sedimentation rate was 80. In group below 40 years age, showed an average WBC count of 10.3 x 10⁹/L, with 25%. polymorphonuclear cells and 75% Lymphocytes. Erythrocyte sedimentation rate was 77. No gender variation was noted in underlying pulmonary disorders, especially those associated with bronchopulmonary obstruction (viz. Bronchiectasis, emphysema, asthma, tuberculosis, and malignancy).

Gender	Age Group	Age	S/E Status	Occupation	Residence	Habits	Treatment History
Group A Males	< 40	23	LSE	factory worker	Karachi	Smoker (35)	Symptomatic therapy
(n=70)	>40	55	LSE	factory worker	Sindh	Smoker (35)	Symptomatic therapy
Group B Females	<40	21	LSE	House wife	Karachi	Gutka (36)	Symptomatic therapy
(n=70)	>40	49	LSE	House wife	Karachi	Huqa (34)	Symptomatic therapy

S/E: socio economic, LSE: low socio economic, A/B: antibiotics

Table No.2: Different gender age groups giving different averages with regard to WBC, PMN, ESR, Lymphocytes

averages with regard to the cyrining Esta, Eymphocytes									
	Gender	Age	Average WBC count (x 10 _□ ⁹ /L)	Average PMN%	Average ESR mm/hr	Average Lympho- cytes %			
	Male	Above 40	9.9	35	60	65			
		Below 40	10.7	22	73	78			
	Female	Above 40	11.0	30	80	70			
		Below 40	10.3	25	75	68			

WBC: white blood cell; PMNs: Polymorphonuclear neutrophils; Lym: lymphocytes; ESR: erythrocyte sedimentation rate

DISCUSSION

Our study suggests that bronchoalveolar lavage is an important tool and valuable interventional technique for accurately evaluating the inflammatory and immune processes of the human lung^{9,10}. Although this lavage recovers only those cells and proteins that are present on the epithelial surface of the lower respiratory tract as compared to open lung biopsies that also provides an information of those constituents, which are representative of the inflammatory and immune systems of the alveolar structures and this is also evident by other studies^{10,11}. The peculiar feature of BAL technique due to which it becomes superior is that the clinician may obtain sufficient materials from diseased individuals to allow characterization of not only the types of cells and proteins present but also the detailed examination can also be done to see other biomedical markers11. Such observations have been useful in defining the inflammatory and immune capabilities of the normal lung and provide a basis for the study of lung disease ¹². From the data already acquired, it is apparent that bronchoalveolar lavage will yield major insights into the pathogenesis, staging, and therapy decisions involved in these disorders as compared to sputum induction and complete blood count.

Studies in adults with COPD have described alterations in the cellular composition of BALF^{13, 14}, but our study suggests that BALF can also be expected to play a vital role in assessment of disease stage, patient's therapeutic response, prognosis and immunological status of COPD as also reported by study done in USA by Tuder RM et al in 2012¹⁴. Defining the BALF differential cell count

is an essential prerequisite for the interpretation of changes observed in lung diseases and this study was done as a first step to define the cellularity of BALF in adults suffering with chronic pulmonary diseases in our set of population.

Very little information is available concerning BALF lymphocyte sub count in COPD population. One of the studies showed that total WBC count was not significantly different as compared to control but the number of lymphocytes was increased and their ratio tended to be high but not reaching the level of statistical significance¹⁴. Our subjects with clinically favorable course of the disease showed a distinct high ratio of BALF lymphocytes, but further phenotypic analysis had not been performed. Biswas SK et al compared the significance of BALF cellular analysis with peripheral complete blood count in 2012 and reported that the number of cells present in peripheral blood picture is 30 % less than the actual cellular count at the site of infection¹⁵.

We observed a high percentage of lymphocytes in the total WBC counts of the BALF samples in our study population. The above finding is in concordance with the marked intra and inter individual variability previously demonstrated in a COPD population [16,17] making the analysis of differential cell counts more suitable for differentiating COPD from other lung diseases^{15,16}. The interesting finding of our study is that the total cells as well as lymphocytes in our population tended to be higher in both age groups that is above 40 and below 40 years with no gender variation, although the exact molecular mechanism(s) for this increase in total cell count has not been explored yet, but it might be either related to smoking or some other factor(s). 17,18 We have assessed the smoking history of the patients by questionnaire, and were able to correlate active as well as passive smoking with absolute cell count of the recovered BALF. However, questionnaires are not considered a reliable tool in determining smoking exposure¹⁹. While we found a relationship between active and passive smoking with BALF cellularity but more detailed study is recommended to address this question.

A considerable rise was also observed in the relative proportion of lymphocytes in smokers and tobacco chewers both as compared to healthy non smoking adult population, which is also supported by the study done in 2007 by Sun YP et al on non smokers. In the mentioned study mean lymphocyte counts was found between 4-18% from the cells recovered from BALF ^{20,21}. While most of the studies reporting mean values of less than 10%. The mean fraction of lymphocytes in our study was 65±12% with a median of 12%, which is higher than in most studies done on COPD patients ²³-²⁵. As it has been reported in larger series of COPD subjects, cells were not normally distributed, with individual subjects exceeding lymphocyte counts of 50% as observed in our study. This is well above the range reported in healthy nonsmoking adult volunteers²⁶. However there is no reported data on BALF analysis of tobacco chewers but this is study is the first step towards BALF cellular analysis of COPD subjects chewing tobacco and will be available for comparison with future studies.

We are unable to scientifically explain the rise in the differential and total cell counts observed in our study. As has been demonstrated in COPD patients, some individuals may have subclinical alveolitis without clinical, radiological or functional abnormalities²⁷. This phenomenon can be expected to occur in COPD population due to any prior or ongoing subclinical respiratory tract infections may have caused changes in the cellularity on the bronchoalveolar surface.

It has become an established fact that acute respiratory viral or bacterial infections occur very frequently in COPD patients²⁸ that may increase the incidence of non specific infections in this group, could influence the variability of lymphocyte counts. Whether the higher lymphocyte counts that we observed were a transient phenomenon or persisted for longer periods could only be clarified if subjects were followed longitudinally, which was not feasible in our study population.

ESR is performed in all subjects that it is governed by the balance between pro-sedimentation factors, mainly fibrinogen, and those factors resisting sedimentation, namely the negative charge of the erythrocytes (zeta potential)²⁹. When an inflammatory process is present, the high proportion of fibrinogen in the blood causes red blood cells to stick to each other. The red cells form stacks called 'rouleaux', which settle faster³⁰, in our study it was used as a protocol to identify active inflammatory status, as it is reported by Vimalanatha S et al in 2008 that ESR is a simple, in expensive and sensitive method of identifying acute inflammatory status.

In summary, we have studied cellular constituents of BALF in COPD patients. Significantly more lymphocytes and less granulocytes were present in our set of population. Lymphocytes were the predominant cell type, followed by granulocytes. Absolute

lymphocyte counts were higher in both age groups, probably due to improper and poor compliance to treatment, recurrent subclinical infections, smoking, tobacco chewing and poor occupational standards. This study provides a first insight into BALF cellularity in the population of Karachi, and will be the basis for further studies in patients with COPD.

CONCLUSION

All patients with chronic obstructive lung diseases showed border line leucocytosis, significant lymphocytosis, raised ESR and mild to moderate dyspnea on the basis of examination and investigations. Hence our study throws a spot light on cellularity of BALF in a subpopulation of Karachi and provides a new horizon for research in COPD that will help towards better understanding of disease.

REFERENCES

- Decramer M, Janssens W, Miravitlles M. Chronic obstructive pulmonary disease. Lancet 2012;379: 1341–1351
- Cosio MG, Saetta M, Agusti A. Immunologic aspects of chronic obstructive pulmonary disease. N Engl J Med 2009;360: 2445–2454.
- 3. Serhan CN. Novel lipid mediators and resolution mechanisms in acute inflammation: to resolve or not? The Am J Pathol 2010;177:
- Sun YP, Oh SF, Uddin J, Yang R, Gotlinger K, et al. Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, antiinflammatory properties, and enzymatic inactivation. The J Biological Chemistry 2007;282: 9323–9334.
- 5. Chen YF, Jiang H, Gong X, Wan JY Resolvin E1. Protects against ox-LDL-induced injury on vascular endothelial cells. Zhonghua Xin Xue Guan Bing ZaZhi 2011;39: 1039–1043.
- Seki H, Fukunaga K, Arita M, Arai H, Nakanishi H, et al. The anti-inflammatory and proresolving mediator resolvin E1 protects mice from bacterial pneumonia and acute lung injury. J Immunol 2010; 184: 836–843.
- 7. Levy BD, Kohli P, Gotlinger K, Haworth O, Hong S, et al. Protectin D1 is generated in asthma and dampens airway inflammation and hyperresponsiveness. J Immunol 2007;178: 496–502.
- 8. Arm JP, Horton CE, Spur BW, Mencia-Huerta JM, Lee TH. The effects of dietary supplementation with fish oil lipids on the airways response to inhaled allergen in bronchial asthma. Am Rev Respir Dis 1989;139:1395–1400.
- Shahar E, Folsom AR, Melnick SL, Tockman MS, Comstock GW, et al. Dietary n-3 polyunsaturated fatty acids and smoking-related chronic obstructive pulmonary disease. Atherosclerosis Risk in Communities Study Investigators. N Engl J Med1994 331: 228–233.

- Martey CA, Pollock SJ, Turner CK, O'Reilly KM, Baglole CJ, et al. Cigarette smoke induces cyclooxygenase-2 and microsomal prostaglandin E2 synthase in human lung fibroblasts: implications for lung inflammation and cancer. Am J Physiol Lung Cell Mol Physiol. 2004;287: L981–991.
- Hassan, Syed Raza; Macfie, Nick "Chinese escape Karachi bomb ahead of Premier Li's arrival in Pakistan". www.reuters.com. Reuters. Retrieved 21 May 2013.
- 12. Yang SR, Chida AS, Bauter MR, Shafiq N, Seweryniak K, et al. Cigarette smoke induces proinflammatory cytokine release by activation of NF-kappaB and posttranslational modifications of histone deacetylase in macrophages. Am J Physiol Lung Cell Mol Physiol 2006;291: L46–57.
- 13. Porcheray F, Viaud S, Rimaniol AC, Leone C, Samah B, et al. Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 2005;142: 481–489.
- Tuder RM, Petrache I. Pathogenesis of chronic obstructive pulmonary disease. J Clin Invest 2012; 122: 2749–2755.
- Gordon S, Martinez FO. Alternative activation of macrophages: mechanism and functions. Immunity 2010;32: 593–604.
- Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010;11: 889–896.
- 17. Kent LM, Fox SM, Farrow SN, Singh D. The effects of dexamethasone on cigarette smoke induced gene expression changes in COPD macrophages. International immune pharmacology 2010:10: 57–64.
- Richens TR, Linderman DJ, Horstmann SA, Lambert C, Xiao YQ, et al. Cigarette smoke impairs clearance of apoptotic cells through oxidant-dependent activation of Rho A. Am J Respiratory and Critical Care Med 2009;179: 1011–1021.
- Hodge S, Hodge G, Ahern J, Jersmann H, Holmes M, et al. Smoking alters alveolar macrophage recognition and phagocytic ability: implications in chronic obstructive pulmonary disease. Am J Respiratory Cell and Molecular Biol 2007;37: 748–755.
- 20. Sun YP, Oh SF, Uddin J, Yang R, Gotlinger K, et al. Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. J Biol Chem 2007;282: 9323–9334.
- 21. Duffield JS, Hong S, Vaidya VS, Lu Y, Fredman G, et al. Resolvin D series and protectin D1 mitigate acute kidney injury. J Immunol 2006;177: 5902–5911.
- 22. Bento AF, Claudino RF, Dutra RC, Marcon R, Calixto JB Omega-3 fatty acid-derived mediators

- 17(R)-hydroxydocosahexaenoic acid, aspirintriggered resolvin D1 and resolvin D2 prevent experimental colitis in mice. J Immunol 2011;187: 1957–1969.
- 23. Rogerio AP, Haworth O, Croze R, Oh SF, Uddin M, et al. Resolvin d1 and aspirin-triggered resolvin d1 promote resolution of allergic airways responses. J Immunol 2012;189:1983–1991.
- 24. Titos E, Rius B, Gonzalez-Periz A, Lopez-Vicario C, Moran-Salvador E, et al. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J Immunol 2011;187: 5408–5418.
- Schif-Zuck S, Gross N, Assi S, Rostoker R, Serhan CN, et al. Saturated-efferocytosis generates proresolving CD11b low macrophages: modulation by resolvins and glucocorticoids. Eur J Immunol 2011;41: 366–379.
- 26. Yokohori N, Aoshiba K, Nagai A. Respiratory Failure Research Group in J Increased levels of cell death and proliferation in alveolar wall cells in patients with pulmonary emphysema. Chest 2004; 125: 626–632.
- 27. Thatcher TH, Benson RP, Phipps RP, Sime PJ. High-dose but not low-dose mainstream cigarette smoke suppresses allergic airway inflammation by inhibiting T cell function. Am J Physiol Lung Cellular and Molecular Physiol 2008;295: L412–421.
- 28. 28. Xu J, Xu F, Barrett E Metalloelastase in lungs and alveolar macrophages is modulated by extracellular substance P in mice. Am J Physiol Lung Cell Mol Physiol 2008;295:L162–170.
- 29. Profita M, Sala A, Bonanno A, Riccobono L, Ferraro M, et al. Chronic obstructive pulmonary disease and neutrophil infiltration: role of cigarette smoke and cyclooxygenase products. Am J Physiol Lung cellular and Molecular Physiol 2010;298: L261–269.
- 30. Abboud RT, Vimalanathan S. Pathogenesis of COPD. Part I. The role of protease-antiprotease imbalance in emphysema. The international journal of tuberculosis and lung disease. The official J of the International Union against Tuberculosis and Lung Disease 2008;12:361–367.

Address for Corresponding Author: Dr. Muhammad Noman Rashid,

Senior Lecturer of Physiology Ziauddin University Clifton Karachi, Pakistan Phone no: 92215862937-9 Ext 452 Mobile no: 923152074182 E-mail:MUHAMMAD.NOMAN@zu.edu.pk dr.nomanrashid@hotmail.com